These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22299962)

  • 21. Fast scanning mode and its realization in a scanning acoustic microscope.
    Ju BF; Bai X; Chen J
    Rev Sci Instrum; 2012 Mar; 83(3):035113. PubMed ID: 22462966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comment on "MEMS-based high speed scanning probe microscopy" [Rev. Sci. Instrum. 81, 043702 (2010)].
    Degertekin FL; Torun H
    Rev Sci Instrum; 2010 Nov; 81(11):117101; author reply 117102. PubMed ID: 21133506
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MEMS-based fast scanning probe microscopes.
    Tabak FC; Disseldorp EC; Wortel GH; Katan AJ; Hesselberth MB; Oosterkamp TH; Frenken JW; van Spengen WM
    Ultramicroscopy; 2010 May; 110(6):599-604. PubMed ID: 20334976
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A non-contact mode scanning force microscope optimised to image biological samples in liquid.
    Grant A; McDonnell L
    Ultramicroscopy; 2003; 97(1-4):177-84. PubMed ID: 12801670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atomic-force-microscope-compatible near-field scanning microwave microscope with separated excitation and sensing probes.
    Lai K; Ji MB; Leindecker N; Kelly MA; Shen ZX
    Rev Sci Instrum; 2007 Jun; 78(6):063702. PubMed ID: 17614611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feedforward correction of nonlinearities in piezoelectric scanner constructions and its experimental verification.
    Graffel B; Müller F; Müller AD; Hietschold M
    Rev Sci Instrum; 2007 May; 78(5):053706. PubMed ID: 17552824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel atomic force microscope operating in liquid for in situ investigation of electrochemical preparation of porous alumina.
    Zhang H; Zhang D; He Y
    Microsc Res Tech; 2005 Feb; 66(2-3):126-31. PubMed ID: 15880512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative scanning probe microscope topographies by charge linearization of the vertical actuator.
    Fleming AJ
    Rev Sci Instrum; 2010 Oct; 81(10):103701. PubMed ID: 21034092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Feedforward control of a closed-loop piezoelectric translation stage for atomic force microscope.
    Li Y; Bechhoefer J
    Rev Sci Instrum; 2007 Jan; 78(1):013702. PubMed ID: 17503923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Model-free iterative control of repetitive dynamics for high-speed scanning in atomic force microscopy.
    Li Y; Bechhoefer J
    Rev Sci Instrum; 2009 Jan; 80(1):013702. PubMed ID: 19191436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reconstruction of a scanned topographic image distorted by the creep effect of a Z scanner in atomic force microscopy.
    Han C; Chung CC
    Rev Sci Instrum; 2011 May; 82(5):053709. PubMed ID: 21639509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A flexible, highly stable electrochemical scanning probe microscope for nanoscale studies at the solid-liquid interface.
    Stieg AZ; Rasool HI; Gimzewski JK
    Rev Sci Instrum; 2008 Oct; 79(10):103701. PubMed ID: 19044713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flexible drift-compensation system for precise 3D force mapping in severe drift environments.
    Rahe P; Schütte J; Schniederberend W; Reichling M; Abe M; Sugimoto Y; Kühnle A
    Rev Sci Instrum; 2011 Jun; 82(6):063704. PubMed ID: 21721699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories.
    Tuma T; Lygeros J; Kartik V; Sebastian A; Pantazi A
    Nanotechnology; 2012 May; 23(18):185501. PubMed ID: 22516658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-actuation and PI control: a simple recipe for high-speed and large-range atomic force microscopy.
    Soltani Bozchalooi I; Youcef-Toumi K
    Ultramicroscopy; 2014 Nov; 146():117-24. PubMed ID: 25164496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Invited review article: A 10 mK scanning probe microscopy facility.
    Song YJ; Otte AF; Shvarts V; Zhao Z; Kuk Y; Blankenship SR; Band A; Hess FM; Stroscio JA
    Rev Sci Instrum; 2010 Dec; 81(12):121101. PubMed ID: 21198007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new simple asymmetric hysteresis operator and its application to inverse control of piezoelectric actuators.
    Badel A; Qiu J; Nakano T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):1086-94. PubMed ID: 18519217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measurement method for determining the magnetic hysteresis effects of reluctance actuators by evaluation of the force and flux variation.
    Vrijsen NH; Jansen JW; Compter JC; Lomonova EA
    Rev Sci Instrum; 2013 Jul; 84(7):075003. PubMed ID: 23902095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theory of non-equilibrium force measurements involving deformable drops and bubbles.
    Chan DY; Klaseboer E; Manica R
    Adv Colloid Interface Sci; 2011 Jul; 165(2):70-90. PubMed ID: 21257141
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microgrinding of lensed fibers by means of a scanning-probe microscope setup.
    Yakunin S; Heitz J
    Appl Opt; 2009 Nov; 48(32):6172-7. PubMed ID: 19904313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.