These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 22299978)

  • 1. Fast on-wafer electrical, mechanical, and electromechanical characterization of piezoresistive cantilever force sensors.
    Tosolini G; Villanueva LG; Perez-Murano F; Bausells J
    Rev Sci Instrum; 2012 Jan; 83(1):015002. PubMed ID: 22299978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene MEMS: AFM probe performance improvement.
    Martin-Olmos C; Rasool HI; Weiller BH; Gimzewski JK
    ACS Nano; 2013 May; 7(5):4164-70. PubMed ID: 23560447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paper-based piezoresistive MEMS sensors.
    Liu X; Mwangi M; Li X; O'Brien M; Whitesides GM
    Lab Chip; 2011 Jul; 11(13):2189-96. PubMed ID: 21566813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contact atomic force microscopy using piezoresistive cantilevers in load force modulation mode.
    Biczysko P; Dzierka A; Jóźwiak G; Rudek M; Gotszalk T; Janus P; Grabiec P; Rangelow IW
    Ultramicroscopy; 2018 Jan; 184(Pt A):199-208. PubMed ID: 28950210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications.
    Li M; Tang HX; Roukes ML
    Nat Nanotechnol; 2007 Feb; 2(2):114-20. PubMed ID: 18654230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spring constant calibration of atomic force microscope cantilevers of arbitrary shape.
    Sader JE; Sanelli JA; Adamson BD; Monty JP; Wei X; Crawford SA; Friend JR; Marusic I; Mulvaney P; Bieske EJ
    Rev Sci Instrum; 2012 Oct; 83(10):103705. PubMed ID: 23126772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Review on Surface Stress-Based Miniaturized Piezoresistive SU-8 Polymeric Cantilever Sensors.
    Mathew R; Ravi Sankar A
    Nanomicro Lett; 2018; 10(2):35. PubMed ID: 30393684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomaterials Based Micro/Nanoelectromechanical System (MEMS and NEMS) Devices.
    Torkashvand Z; Shayeganfar F; Ramazani A
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact-free experimental determination of the static flexural spring constant of cantilever sensors using a microfluidic force tool.
    Parkin JD; Hähner G
    Beilstein J Nanotechnol; 2016; 7():492-500. PubMed ID: 27335740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensing magnetic flux density of artificial neurons with a MEMS device.
    Tapia JA; Herrera-May AL; García-Ramírez PJ; Martinez-Castillo J; Figueras E; Flores A; Manjarrez E
    Biomed Microdevices; 2011 Apr; 13(2):303-13. PubMed ID: 21113665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the union method of microelectrode array and AFM for the recording of electromechanical activities in living cardiomyocytes.
    Tian J; Tu C; Huang B; Liang Y; Zhou J; Ye X
    Eur Biophys J; 2017 Jul; 46(5):495-507. PubMed ID: 28012038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skate, overtravel, and contact force of tilted triangular cantilevers for microcantilever-based MEMS probe technologies.
    Arscott S
    Sci Rep; 2022 Nov; 12(1):19386. PubMed ID: 36371455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy harvesting: an integrated view of materials, devices and applications.
    Radousky HB; Liang H
    Nanotechnology; 2012 Dec; 23(50):502001. PubMed ID: 23186865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-sensing piezoresistive cantilever and its magnetic force microscopy applications.
    Takahashi H; Ando K; Shirakawabe Y
    Ultramicroscopy; 2002 May; 91(1-4):63-72. PubMed ID: 12211485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive room-temperature piezoresistive transduction in graphene-based nanoelectromechanical systems.
    Kumar M; Bhaskaran H
    Nano Lett; 2015 Apr; 15(4):2562-7. PubMed ID: 25723099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Sensitive Electromechanical Piezoresistive Pressure Sensors Based on Large-Area Layered PtSe
    Wagner S; Yim C; McEvoy N; Kataria S; Yokaribas V; Kuc A; Pindl S; Fritzen CP; Heine T; Duesberg GS; Lemme MC
    Nano Lett; 2018 Jun; 18(6):3738-3745. PubMed ID: 29768010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-electromechanical sensors in the analytical field.
    Zougagh M; Ríos A
    Analyst; 2009 Jul; 134(7):1274-90. PubMed ID: 19562189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Batch fabrication of atomic force microscopy probes with recessed integrated ring microelectrodes at a wafer level.
    Shin H; Hesketh PJ; Mizaikoff B; Kranz C
    Anal Chem; 2007 Jul; 79(13):4769-77. PubMed ID: 17521168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of thermal and acoustic noise interferences in low stiffness atomic force microscope cantilevers and characterization of their dynamic properties.
    Boudaoud M; Haddab Y; Le Gorrec Y; Lutz P
    Rev Sci Instrum; 2012 Jan; 83(1):013704. PubMed ID: 22299959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suspended Graphene Membranes with Attached Silicon Proof Masses as Piezoresistive Nanoelectromechanical Systems Accelerometers.
    Fan X; Forsberg F; Smith AD; Schröder S; Wagner S; Östling M; Lemme MC; Niklaus F
    Nano Lett; 2019 Oct; 19(10):6788-6799. PubMed ID: 31478660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.