These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 22299999)
1. Note: Thermal conductivity measurement of individual poly(ether ketone)/carbon nanotube fibers using a steady-state dc thermal bridge method. Moon J; Weaver K; Feng B; Chae HG; Kumar S; Baek JB; Peterson GP Rev Sci Instrum; 2012 Jan; 83(1):016103. PubMed ID: 22299999 [TBL] [Abstract][Full Text] [Related]
2. Note: Thermal conductivity measurement of individual porous polyimide fibers using a modified wire-shape 3 Qiu L; Ouyang Y; Feng Y; Zhang X Rev Sci Instrum; 2018 Sep; 89(9):096112. PubMed ID: 30278753 [TBL] [Abstract][Full Text] [Related]
3. Continuous Carbon Nanotube-Based Fibers and Films for Applications Requiring Enhanced Heat Dissipation. Liu P; Fan Z; Mikhalchan A; Tran TQ; Jewell D; Duong HM; Marconnet AM ACS Appl Mater Interfaces; 2016 Jul; 8(27):17461-71. PubMed ID: 27322344 [TBL] [Abstract][Full Text] [Related]
4. Measurement of the thermal conductivity of a water-based single-wall carbon nanotube colloidal suspension with a modified 3- omega method. Choi TY; Maneshian MH; Kang B; Chang WS; Han CS; Poulikakos D Nanotechnology; 2009 Aug; 20(31):315706. PubMed ID: 19597251 [TBL] [Abstract][Full Text] [Related]
5. Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method. Li Q; Liu C; Wang X; Fan S Nanotechnology; 2009 Apr; 20(14):145702. PubMed ID: 19420532 [TBL] [Abstract][Full Text] [Related]
6. High temperature thermal conductivity of platinum microwire by 3ω method. Bhatta RP; Annamalai S; Mohr RK; Brandys M; Pegg IL; Dutta B Rev Sci Instrum; 2010 Nov; 81(11):114904. PubMed ID: 21133493 [TBL] [Abstract][Full Text] [Related]
7. Raman Measurement of Heat Transfer in Suspended Individual Carbon Nanotube. Wang HD; Liu JH; Zhang X; Zhang RF; Wei F J Nanosci Nanotechnol; 2015 Apr; 15(4):2939-43. PubMed ID: 26353517 [TBL] [Abstract][Full Text] [Related]
8. Highly sensitive thermal conductivity measurements of suspended membranes (SiN and diamond) using a 3ω-Völklein method. Sikora A; Ftouni H; Richard J; Hébert C; Eon D; Omnès F; Bourgeois O Rev Sci Instrum; 2012 May; 83(5):054902. PubMed ID: 22667639 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous measurements of the specific heat and thermal conductivity of suspended thin samples by transient electrothermal method. Feng B; Ma W; Li Z; Zhang X Rev Sci Instrum; 2009 Jun; 80(6):064901. PubMed ID: 19566218 [TBL] [Abstract][Full Text] [Related]
10. Raman characterization of thermal conduction in transparent carbon nanotube films. Kim D; Zhu L; Han CS; Kim JH; Baik S Langmuir; 2011 Dec; 27(23):14532-8. PubMed ID: 22004446 [TBL] [Abstract][Full Text] [Related]
11. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions. Liang XM; Ding W; Chen HH; Shu Z; Zhao G; Zhang HF; Gao D Biomed Microdevices; 2011 Oct; 13(5):923-8. PubMed ID: 21710370 [TBL] [Abstract][Full Text] [Related]
12. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Behabtu N; Young CC; Tsentalovich DE; Kleinerman O; Wang X; Ma AW; Bengio EA; ter Waarbeek RF; de Jong JJ; Hoogerwerf RE; Fairchild SB; Ferguson JB; Maruyama B; Kono J; Talmon Y; Cohen Y; Otto MJ; Pasquali M Science; 2013 Jan; 339(6116):182-6. PubMed ID: 23307737 [TBL] [Abstract][Full Text] [Related]
13. Temperature-dependent resistance of carbon nanotube fibers. Song Y; Di J; Jia Y; Yong Z; Xu J Nanotechnology; 2022 Mar; 33(23):. PubMed ID: 35235915 [TBL] [Abstract][Full Text] [Related]
14. Thermal conductivity measurement of thin films by a dc method. Yang J; Zhang J; Zhang H; Zhu Y Rev Sci Instrum; 2010 Nov; 81(11):114902. PubMed ID: 21133491 [TBL] [Abstract][Full Text] [Related]
15. Thermal conductivity measurement of fluids using the 3omega method. Lee SM Rev Sci Instrum; 2009 Feb; 80(2):024901. PubMed ID: 19256671 [TBL] [Abstract][Full Text] [Related]
16. Carbon nanotube wires and cables: near-term applications and future perspectives. Jarosz P; Schauerman C; Alvarenga J; Moses B; Mastrangelo T; Raffaelle R; Ridgley R; Landi B Nanoscale; 2011 Nov; 3(11):4542-53. PubMed ID: 21984338 [TBL] [Abstract][Full Text] [Related]
17. A simple differential steady-state method to measure the thermal conductivity of solid bulk materials with high accuracy. Kraemer D; Chen G Rev Sci Instrum; 2014 Feb; 85(2):025108. PubMed ID: 24593397 [TBL] [Abstract][Full Text] [Related]
18. Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials. Kholmanov I; Kim J; Ou E; Ruoff RS; Shi L ACS Nano; 2015 Dec; 9(12):11699-707. PubMed ID: 26529570 [TBL] [Abstract][Full Text] [Related]
19. Superlow thermal conductivity 3D carbon nanotube network for thermoelectric applications. Chen J; Gui X; Wang Z; Li Z; Xiang R; Wang K; Wu D; Xia X; Zhou Y; Wang Q; Tang Z; Chen L ACS Appl Mater Interfaces; 2012 Jan; 4(1):81-6. PubMed ID: 22132803 [TBL] [Abstract][Full Text] [Related]
20. The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations. Alaghemandi M; Algaer E; Böhm MC; Müller-Plathe F Nanotechnology; 2009 Mar; 20(11):115704. PubMed ID: 19420452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]