These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

597 related articles for article (PubMed ID: 22300046)

  • 1. Action of molecular switches in GPCRs--theoretical and experimental studies.
    Trzaskowski B; Latek D; Yuan S; Ghoshdastider U; Debinski A; Filipek S
    Curr Med Chem; 2012; 19(8):1090-109. PubMed ID: 22300046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in methods to characterize ligand-induced ionic lock and rotamer toggle molecular switch in G protein-coupled receptors.
    Xie XQ; Chowdhury A
    Methods Enzymol; 2013; 520():153-74. PubMed ID: 23332699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-stabilized conformational states of human beta(2) adrenergic receptor: insight into G-protein-coupled receptor activation.
    Bhattacharya S; Hall SE; Li H; Vaidehi N
    Biophys J; 2008 Mar; 94(6):2027-42. PubMed ID: 18065472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G protein-coupled receptors--recent advances.
    Latek D; Modzelewska A; Trzaskowski B; Palczewski K; Filipek S
    Acta Biochim Pol; 2012; 59(4):515-29. PubMed ID: 23251911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand binding and micro-switches in 7TM receptor structures.
    Nygaard R; Frimurer TM; Holst B; Rosenkilde MM; Schwartz TW
    Trends Pharmacol Sci; 2009 May; 30(5):249-59. PubMed ID: 19375807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing Class A GPCRs to bitter taste receptors: Structural motifs, ligand interactions and agonist-to-antagonist ratios.
    Di Pizio A; Levit A; Slutzki M; Behrens M; Karaman R; Niv MY
    Methods Cell Biol; 2016; 132():401-27. PubMed ID: 26928553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The DRY motif and the four corners of the cubic ternary complex model.
    Rovati GE; Capra V; Shaw VS; Malik RU; Sivaramakrishnan S; Neubig RR
    Cell Signal; 2017 Jul; 35():16-23. PubMed ID: 28347873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. G-protein-coupled receptor dynamics: dimerization and activation models compared with experiment.
    Taddese B; Simpson LM; Wall ID; Blaney FE; Kidley NJ; Clark HS; Smith RE; Upton GJ; Gouldson PR; Psaroudakis G; Bywater RP; Reynolds CA
    Biochem Soc Trans; 2012 Apr; 40(2):394-9. PubMed ID: 22435818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of Cysteine 6.47 in class A GPCRs.
    Olivella M; Caltabiano G; Cordomí A
    BMC Struct Biol; 2013 Mar; 13():3. PubMed ID: 23497259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approaches for Differentiation and Interconverting GPCR Agonists and Antagonists.
    Miszta P; Jakowiecki J; Rutkowska E; Turant M; Latek D; Filipek S
    Methods Mol Biol; 2018; 1705():265-296. PubMed ID: 29188567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two arginine-glutamate ionic locks near the extracellular surface of FFAR1 gate receptor activation.
    Sum CS; Tikhonova IG; Costanzi S; Gershengorn MC
    J Biol Chem; 2009 Feb; 284(6):3529-36. PubMed ID: 19068482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying conformational changes in GPCRs: glimpse of a common functional mechanism.
    Dalton JA; Lans I; Giraldo J
    BMC Bioinformatics; 2015 Apr; 16(1):124. PubMed ID: 25902715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights for drug design from the X-ray crystallographic structures of G-protein-coupled receptors.
    Jacobson KA; Costanzi S
    Mol Pharmacol; 2012 Sep; 82(3):361-71. PubMed ID: 22695719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 7TM Domain Structure of Adhesion GPCRs.
    de Graaf C; Nijmeijer S; Wolf S; Ernst OP
    Handb Exp Pharmacol; 2016; 234():43-66. PubMed ID: 27832483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale computational methods for mapping conformational ensembles of G-protein-coupled receptors.
    Vaidehi N; Bhattacharya S
    Adv Protein Chem Struct Biol; 2011; 85():253-80. PubMed ID: 21920326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational flexibility and structural dynamics in GPCR-mediated G protein activation: a perspective.
    Preininger AM; Meiler J; Hamm HE
    J Mol Biol; 2013 Jul; 425(13):2288-98. PubMed ID: 23602809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of conformational ensembles in ligand recognition in G-protein coupled receptors.
    Niesen MJ; Bhattacharya S; Vaidehi N
    J Am Chem Soc; 2011 Aug; 133(33):13197-204. PubMed ID: 21766860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Insights from Molecular Dynamics Simulations for G Protein-Coupled Receptor Drug Discovery.
    Zou Y; Ewalt J; Ng HL
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31470676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of structural dynamics of ligand-activated membrane receptors by means of principal component analysis.
    Novikov GV; Sivozhelezov VS; Shaitan KV
    Biochemistry (Mosc); 2013 Apr; 78(4):403-11. PubMed ID: 23590443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.