These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 22300073)

  • 1. Recent advances in gut nutrient chemosensing.
    Nguyen CA; Akiba Y; Kaunitz JD
    Curr Med Chem; 2012; 19(1):28-34. PubMed ID: 22300073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic control via nutrient-sensing mechanisms: role of taste receptors and the gut-brain neuroendocrine axis.
    Raka F; Farr S; Kelly J; Stoianov A; Adeli K
    Am J Physiol Endocrinol Metab; 2019 Oct; 317(4):E559-E572. PubMed ID: 31310579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients.
    Wellendorph P; Johansen LD; Bräuner-Osborne H
    Mol Pharmacol; 2009 Sep; 76(3):453-65. PubMed ID: 19487246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The emerging role of promiscuous 7TM receptors as chemosensors for food intake.
    Wellendorph P; Johansen LD; Bräuner-Osborne H
    Vitam Horm; 2010; 84():151-84. PubMed ID: 21094899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutrient sensing and signalling by the gut.
    Rasoamanana R; Darcel N; Fromentin G; Tomé D
    Proc Nutr Soc; 2012 Nov; 71(4):446-55. PubMed ID: 22453062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of nutrient-sensing taste 1 receptor (T1R) family members in gastrointestinal chemosensing.
    Shirazi-Beechey SP; Daly K; Al-Rammahi M; Moran AW; Bravo D
    Br J Nutr; 2014 Jun; 111 Suppl 1():S8-15. PubMed ID: 24382171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting lipid GPCRs to treat type 2 diabetes mellitus - progress and challenges.
    Ghislain J; Poitout V
    Nat Rev Endocrinol; 2021 Mar; 17(3):162-175. PubMed ID: 33495605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gut feelings in the islets: The role of the gut microbiome and the FFA2 and FFA3 receptors for short chain fatty acids on β-cell function and metabolic regulation.
    Teyani R; Moniri NH
    Br J Pharmacol; 2023 Dec; 180(24):3113-3129. PubMed ID: 37620991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing pharmacological ligands to study the long-chain fatty acid receptors GPR40/FFA1 and GPR120/FFA4.
    Milligan G; Alvarez-Curto E; Watterson KR; Ulven T; Hudson BD
    Br J Pharmacol; 2015 Jul; 172(13):3254-65. PubMed ID: 25131623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free fatty acids-sensing G protein-coupled receptors in drug targeting and therapeutics.
    Yonezawa T; Kurata R; Yoshida K; Murayama MA; Cui X; Hasegawa A
    Curr Med Chem; 2013; 20(31):3855-71. PubMed ID: 23862620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets.
    Ulven T
    Front Endocrinol (Lausanne); 2012; 3():111. PubMed ID: 23060857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal differential expression of chemoreceptors of free fatty acids along the gastrointestinal tract of supplemental feeding v. grazing kid goats.
    Ran T; Liu Y; Jiao JZ; Zhou CS; Tang SX; Wang M; He ZX; Tan ZL; Yang WZ; Beauchemin KA
    Animal; 2019 Mar; 13(3):509-517. PubMed ID: 29986789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of GPCR Structures for Modelling of Free Fatty Acid Receptors.
    Tikhonova IG
    Handb Exp Pharmacol; 2017; 236():57-77. PubMed ID: 27757764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutrient sensing of gut luminal environment.
    Moran AW; Daly K; Al-Rammahi MA; Shirazi-Beechey SP
    Proc Nutr Soc; 2021 Feb; 80(1):29-36. PubMed ID: 32684178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New frontiers in gut nutrient sensor research: free fatty acid sensing in the gastrointestinal tract.
    Miyauchi S; Hirasawa A; Ichimura A; Hara T; Tsujimoto G
    J Pharmacol Sci; 2010; 112(1):19-24. PubMed ID: 20093784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Host energy regulation via SCFAs receptors, as dietary nutrition sensors, by gut microbiota].
    Kimura I
    Yakugaku Zasshi; 2014; 134(10):1037-42. PubMed ID: 25274213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-chain fatty acid sensing in rat duodenum.
    Akiba Y; Inoue T; Kaji I; Higashiyama M; Narimatsu K; Iwamoto K; Watanabe M; Guth PH; Engel E; Kuwahara A; Kaunitz JD
    J Physiol; 2015 Feb; 593(3):585-99. PubMed ID: 25433076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The G-protein-coupled receptor 40 family (GPR40-GPR43) and its role in nutrient sensing.
    Covington DK; Briscoe CA; Brown AJ; Jayawickreme CK
    Biochem Soc Trans; 2006 Nov; 34(Pt 5):770-3. PubMed ID: 17052194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-species comparison of genes related to nutrient sensing mechanisms expressed along the intestine.
    van der Wielen N; van Avesaat M; de Wit NJ; Vogels JT; Troost F; Masclee A; Koopmans SJ; van der Meulen J; Boekschoten MV; Müller M; Hendriks HF; Witkamp RF; Meijerink J
    PLoS One; 2014; 9(9):e107531. PubMed ID: 25216051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of tongue-expressed GPR40 and GPR120 by non caloric agonists is not sufficient to drive preference in mice.
    Godinot N; Yasumatsu K; Barcos ME; Pineau N; Ledda M; Viton F; Ninomiya Y; le Coutre J; Damak S
    Neuroscience; 2013 Oct; 250():20-30. PubMed ID: 23831422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.