These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22300219)

  • 41. Copper and arsenate co-sorption at the mineral-water interfaces of goethite and jarosite.
    Gräfe M; Beattie DA; Smith E; Skinner WM; Singh B
    J Colloid Interface Sci; 2008 Jun; 322(2):399-413. PubMed ID: 18423478
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel square pyramidal iron(III) complexes of linear tetradentate bis(phenolate) ligands as structural and reactive models for intradiol-cleaving 3,4-PCD enzymes: Quinone formation vs. intradiol cleavage.
    Mayilmurugan R; Sankaralingam M; Suresh E; Palaniandavar M
    Dalton Trans; 2010 Oct; 39(40):9611-25. PubMed ID: 20835480
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reductive transformation and mineralization of an azo dye by hydroxysulphate green rust preceding oxidation using H(2)O(2) at neutral pH.
    Kone T; Hanna K; Abdelmoula M; Ruby C; Carteret C
    Chemosphere; 2009 Apr; 75(2):212-9. PubMed ID: 19147177
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of surface composition on the kinetics of alachlor reduction by iron pyrite.
    Carlson DL; McGuire MM; Roberts AL; Fairbrother DH
    Environ Sci Technol; 2003 Jun; 37(11):2394-9. PubMed ID: 12831023
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Zinc adsorption on goethite as affected by glyphosate.
    Wang YJ; Zhou DM; Sun RJ; Jia DA; Zhu HW; Wang SQ
    J Hazard Mater; 2008 Feb; 151(1):179-84. PubMed ID: 17604908
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Iron(III) complexes of tridentate 3N ligands as functional models for catechol dioxygenases: the role of ligand N-alkyl substitution and solvent on reaction rate and product selectivity.
    Visvaganesan K; Mayilmurugan R; Suresh E; Palaniandavar M
    Inorg Chem; 2007 Nov; 46(24):10294-306. PubMed ID: 17958355
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetics of reductive dissolution of hematite by bioreduced anthraquinone-2,6-disulfonate.
    Liu C; Zachara JM; Foster NS; Strickland J
    Environ Sci Technol; 2007 Nov; 41(22):7730-5. PubMed ID: 18075081
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preferential adsorption of extracellular polymeric substances from bacteria on clay minerals and iron oxide.
    Cao Y; Wei X; Cai P; Huang Q; Rong X; Liang W
    Colloids Surf B Biointerfaces; 2011 Mar; 83(1):122-7. PubMed ID: 21130614
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Release of NO from reduced nitroprusside ion. Iron-dinitrosyl formation and NO-disproportionation reactions.
    Roncaroli F; van Eldik R; Olabe JA
    Inorg Chem; 2005 Apr; 44(8):2781-90. PubMed ID: 15819566
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chlorinated herbicide (triallate) dehalogenation by iron powder.
    Volpe A; Lopez A; Mascolo G; Detomaso A
    Chemosphere; 2004 Nov; 57(7):579-86. PubMed ID: 15488919
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of Fe(2+)-catalysed iron oxide recrystallization on metal cycling.
    Latta DE; Gorski CA; Scherer MM
    Biochem Soc Trans; 2012 Dec; 40(6):1191-7. PubMed ID: 23176453
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The reductive immobilization of aqueous Se(IV) by natural pyrrhotite.
    Ma B; Kang M; Zheng Z; Chen F; Xie J; Charlet L; Liu C
    J Hazard Mater; 2014 Jul; 276():422-32. PubMed ID: 24929304
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dissipation, Fate, and Toxicity of Crop Protection Chemical Safeners in Aquatic Environments.
    Oloye FF; Femi-Oloye OP; Challis JK; Jones PD; Giesy JP
    Rev Environ Contam Toxicol; 2021; 258():27-53. PubMed ID: 34529146
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thermodynamic Characterization of Iron Oxide-Aqueous Fe(2+) Redox Couples.
    Gorski CA; Edwards R; Sander M; Hofstetter TB; Stewart SM
    Environ Sci Technol; 2016 Aug; 50(16):8538-47. PubMed ID: 27427506
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Specific binding of a dichloroacetamide herbicide safener in maize at a site that also binds thiocarbamate and chloroacetanilide herbicides.
    Walton JD; Casida JE
    Plant Physiol; 1995 Sep; 109(1):213-9. PubMed ID: 7480323
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Herbicide safeners: uses, limitations, metabolism, and mechanisms of action.
    Abu-Qare AW; Duncan HJ
    Chemosphere; 2002 Sep; 48(9):965-74. PubMed ID: 12222792
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reactivity of chloroacetamides toward sulfide + black carbon: Insights from structural analogues and dynamic NMR spectroscopy.
    Xu X; Gujarati PD; Okwor N; Sivey JD; Reber KP; Xu W
    Sci Total Environ; 2022 Jan; 803():150064. PubMed ID: 34525700
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhancing metolachlor destruction rates with aluminum and iron salts during zerovalent iron treatment.
    Satapanajaru T; Comfort SD; Shea PJ
    J Environ Qual; 2003; 32(5):1726-34. PubMed ID: 14535314
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Herbicide Safeners: From Molecular Structure Design to Safener Activity.
    Zhao Y; Ye F; Fu Y
    J Agric Food Chem; 2024 Feb; 72(5):2451-2466. PubMed ID: 38276871
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of Carbonate in Thermodynamic Relationships Describing Pollutant Reduction Kinetics by Iron Oxide-Bound Fe
    Chen G; Hofstetter TB; Gorski CA
    Environ Sci Technol; 2020 Aug; 54(16):10109-10117. PubMed ID: 32667790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.