These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22300521)

  • 41. Multiple step growth of single crystalline rutile nanorods with the assistance of self-assembled monolayer for dye sensitized solar cells.
    Yang M; Neupane S; Wang X; He J; Li W; Pala N
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9809-15. PubMed ID: 24033252
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO(2) photoelectrodes.
    Yamaguchi T; Tobe N; Matsumoto D; Arakawa H
    Chem Commun (Camb); 2007 Dec; (45):4767-9. PubMed ID: 18004435
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Growth of ZnO nanowires on fibers for one-dimensional flexible quantum dot-sensitized solar cells.
    Chen H; Zhu L; Liu H; Li W
    Nanotechnology; 2012 Feb; 23(7):075402. PubMed ID: 22261246
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dye-sensitized solar cells based on a nanoparticle/nanotube bilayer structure and their equivalent circuit analysis.
    Xin X; Wang J; Han W; Ye M; Lin Z
    Nanoscale; 2012 Feb; 4(3):964-9. PubMed ID: 22193983
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Direct Low-Temperature Growth of Single-Crystalline Anatase TiO2 Nanorod Arrays on Transparent Conducting Oxide Substrates for Use in PbS Quantum-Dot Solar Cells.
    Chung HS; Han GS; Park SY; Shin HW; Ahn TK; Jeong S; Cho IS; Jung HS
    ACS Appl Mater Interfaces; 2015 May; 7(19):10324-30. PubMed ID: 25928587
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Light harvesting and photocurrent generation by nanostructured photoelectrodes sensitized with a photosynthetic pigment: a new application for microalgae.
    Mohammadpour R; Janfaza S; Abbaspour-Aghdam F
    Bioresour Technol; 2014 Jul; 163():1-5. PubMed ID: 24768904
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single-crystalline zinc oxide nanowires as photoanode material for dye-sensitized solar cells.
    Ho ST; Hsiao CL; Lin HY; Chen HA; Wang CY; Lin HN
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6473-8. PubMed ID: 21137749
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells.
    Yip CT; Guo M; Huang H; Zhou L; Wang Y; Huang C
    Nanoscale; 2012 Jan; 4(2):448-50. PubMed ID: 22159643
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancing the photoelectrical performance of dye-sensitized solar cells using TiO2:Eu3+ nanorods.
    Hafez H; Wu J; Lan Z; Li Q; Xie G; Lin J; Huang M; Huang Y; Abdel-Mottaleb MS
    Nanotechnology; 2010 Oct; 21(41):415201. PubMed ID: 20844327
    [TBL] [Abstract][Full Text] [Related]  

  • 50. One-step growth of well-aligned TiO2 nanorod arrays for flexible dye-sensitized solar cells.
    Chen X; Tang Q; Zhao Z; Wang X; He B; Yu L
    Chem Commun (Camb); 2015 Feb; 51(10):1945-8. PubMed ID: 25531300
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel preparation of small TiO₂ nanoparticle and its application to dye-sensitized solar cells with binder-free paste at low temperature.
    Fan K; Gong C; Peng T; Chen J; Xia J
    Nanoscale; 2011 Sep; 3(9):3900-6. PubMed ID: 21845275
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface-treated TiO2 nanoparticles for dye-sensitized solar cells with remarkably enhanced performance.
    Xin X; Scheiner M; Ye M; Lin Z
    Langmuir; 2011 Dec; 27(23):14594-8. PubMed ID: 22013973
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Size-tunable TiO2 nanorod microspheres synthesised via a one-pot solvothermal method and used as the scattering layer for dye-sensitized solar cells.
    Rui Y; Li Y; Zhang Q; Wang H
    Nanoscale; 2013 Dec; 5(24):12574-81. PubMed ID: 24173030
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bilayer inverse opal TiO2 electrodes for dye-sensitized solar cells via post-treatment.
    Shin JH; Moon JH
    Langmuir; 2011 May; 27(10):6311-5. PubMed ID: 21488619
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Organic dye-sensitized sponge-like TiO₂ photoanode for dye-sensitized solar cells.
    Liu J; Yang Q; Li M; Zhu W; Tian H; Song Y
    Philos Trans A Math Phys Eng Sci; 2013 Oct; 371(2000):20120314. PubMed ID: 24000365
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multichromophore light harvesting in hybrid solar cells.
    Bandara J; Willinger K; Thelakkat M
    Phys Chem Chem Phys; 2011 Jul; 13(28):12906-11. PubMed ID: 21695348
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrophoretic deposition of mesoporous TiO2 nanoparticles consisting of primary anatase nanocrystallites on a plastic substrate for flexible dye-sensitized solar cells.
    Chen HW; Liang CP; Huang HS; Chen JG; Vittal R; Lin CY; Wu KC; Ho KC
    Chem Commun (Camb); 2011 Aug; 47(29):8346-8. PubMed ID: 21691640
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of 3D interconnected porous TiO2 nanotubes templated by poly(vinyl chloride-g-4-vinyl pyridine) for dye-sensitized solar cells.
    Koh JH; Koh JK; Seo JA; Shin JS; Kim JH
    Nanotechnology; 2011 Sep; 22(36):365401. PubMed ID: 21836328
    [TBL] [Abstract][Full Text] [Related]  

  • 60. One-dimensional densely aligned perovskite-decorated semiconductor heterojunctions with enhanced photocatalytic activity.
    Wang M; Zheng D; Ye M; Zhang C; Xu B; Lin C; Sun L; Lin Z
    Small; 2015 Mar; 11(12):1436-42. PubMed ID: 25363306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.