These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22300606)

  • 1. Mechanisms underlying CO2 diffusion in leaves.
    Kaldenhoff R
    Curr Opin Plant Biol; 2012 Jun; 15(3):276-81. PubMed ID: 22300606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO₂ transport facilitator.
    Heckwolf M; Pater D; Hanson DT; Kaldenhoff R
    Plant J; 2011 Sep; 67(5):795-804. PubMed ID: 21564354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field.
    Niinemets U; Díaz-Espejo A; Flexas J; Galmés J; Warren CR
    J Exp Bot; 2009; 60(8):2249-70. PubMed ID: 19395391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light and CO2 do not affect the mesophyll conductance to CO2 diffusion in wheat leaves.
    Tazoe Y; von Caemmerer S; Badger MR; Evans JR
    J Exp Bot; 2009; 60(8):2291-301. PubMed ID: 19255060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapevine plants, before and after ex vitro acclimatization.
    Fila G; Badeck FW; Meyer S; Cerovic Z; Ghashghaie J
    J Exp Bot; 2006; 57(11):2687-95. PubMed ID: 16837534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion.
    Terashima I; Hanba YT; Tazoe Y; Vyas P; Yano S
    J Exp Bot; 2006; 57(2):343-54. PubMed ID: 16356943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of the barley aquaporin HvPIP2;1 increases internal CO(2) conductance and CO(2) assimilation in the leaves of transgenic rice plants.
    Hanba YT; Shibasaka M; Hayashi Y; Hayakawa T; Kasamo K; Terashima I; Katsuhara M
    Plant Cell Physiol; 2004 May; 45(5):521-9. PubMed ID: 15169933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does lateral gas diffusion in leaves matter?
    Morison JI; Lawson T
    Plant Cell Environ; 2007 Sep; 30(9):1072-85. PubMed ID: 17661748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function.
    Tosens T; Niinemets U; Vislap V; Eichelmann H; Castro Díez P
    Plant Cell Environ; 2012 May; 35(5):839-56. PubMed ID: 22070625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration.
    Li Y; Gao Y; Xu X; Shen Q; Guo S
    J Exp Bot; 2009; 60(8):2351-60. PubMed ID: 19395387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of aquaporins in leaf physiology.
    Heinen RB; Ye Q; Chaumont F
    J Exp Bot; 2009; 60(11):2971-85. PubMed ID: 19542196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation.
    Niinemets U; Wright IJ; Evans JR
    J Exp Bot; 2009; 60(8):2433-49. PubMed ID: 19255061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of a CO
    Ermakova M; Osborn H; Groszmann M; Bala S; Bowerman A; McGaughey S; Byrt C; Alonso-Cantabrana H; Tyerman S; Furbank RT; Sharwood RE; von Caemmerer S
    Elife; 2021 Nov; 10():. PubMed ID: 34842138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis.
    Flexas J; Barbour MM; Brendel O; Cabrera HM; Carriquí M; Díaz-Espejo A; Douthe C; Dreyer E; Ferrio JP; Gago J; Gallé A; Galmés J; Kodama N; Medrano H; Niinemets Ü; Peguero-Pina JJ; Pou A; Ribas-Carbó M; Tomás M; Tosens T; Warren CR
    Plant Sci; 2012 Sep; 193-194():70-84. PubMed ID: 22794920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of HgCl(2) on CO(2) dependence of leaf photosynthesis: evidence indicating involvement of aquaporins in CO(2) diffusion across the plasma membrane.
    Terashima I; Ono K
    Plant Cell Physiol; 2002 Jan; 43(1):70-8. PubMed ID: 11828024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesophyll conductance to CO2: current knowledge and future prospects.
    Flexas J; Ribas-Carbó M; Diaz-Espejo A; Galmés J; Medrano H
    Plant Cell Environ; 2008 May; 31(5):602-21. PubMed ID: 17996013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C(3) plants.
    Flexas J; Bota J; Loreto F; Cornic G; Sharkey TD
    Plant Biol (Stuttg); 2004 May; 6(3):269-79. PubMed ID: 15143435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evergreens favored by higher responsiveness to increased CO₂.
    Niinemets U; Flexas J; Peñuelas J
    Trends Ecol Evol; 2011 Mar; 26(3):136-42. PubMed ID: 21277042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion.
    Tholen D; Zhu XG
    Plant Physiol; 2011 May; 156(1):90-105. PubMed ID: 21441385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesophyll conductance: internal insights of leaf carbon exchange.
    Griffiths H; Helliker BR
    Plant Cell Environ; 2013 Apr; 36(4):733-5. PubMed ID: 23387473
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.