BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 22300606)

  • 21. The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves.
    Tholen D; Boom C; Noguchi K; Ueda S; Katase T; Terashima I
    Plant Cell Environ; 2008 Nov; 31(11):1688-700. PubMed ID: 18721264
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The impact of blue light on leaf mesophyll conductance.
    Loreto F; Tsonev T; Centritto M
    J Exp Bot; 2009; 60(8):2283-90. PubMed ID: 19395388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field.
    Niinemets U; Díaz-Espejo A; Flexas J; Galmés J; Warren CR
    J Exp Bot; 2009; 60(8):2271-82. PubMed ID: 19305021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Opinion: stomatal responses to light and CO(2) depend on the mesophyll.
    Mott KA
    Plant Cell Environ; 2009 Nov; 32(11):1479-86. PubMed ID: 19627565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon dioxide signalling in plant leaves.
    Lüttge U
    C R Biol; 2007 May; 330(5):375-81. PubMed ID: 17531786
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoacoustic analysis indicates that chloroplast movement does not alter liquid-phase CO2 diffusion in leaves of Alocasia brisbanensis.
    Gorton HL; Herbert SK; Vogelmann TC
    Plant Physiol; 2003 Jul; 132(3):1529-39. PubMed ID: 12857833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of the response of photosynthesis to oxygen to estimate mesophyll conductance to carbon dioxide in water-stressed soybean leaves.
    Bunce JA
    Plant Cell Environ; 2009 Jul; 32(7):875-81. PubMed ID: 19236605
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compartmentation of photosynthesis in cells and tissues of C(4) plants.
    Edwards GE; Franceschi VR; Ku MS; Voznesenskaya EV; Pyankov VI; Andreo CS
    J Exp Bot; 2001 Apr; 52(356):577-90. PubMed ID: 11373306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resistances along the CO2 diffusion pathway inside leaves.
    Evans JR; Kaldenhoff R; Genty B; Terashima I
    J Exp Bot; 2009; 60(8):2235-48. PubMed ID: 19395390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls.
    Hassiotou F; Ludwig M; Renton M; Veneklaas EJ; Evans JR
    J Exp Bot; 2009; 60(8):2303-14. PubMed ID: 19286919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves.
    Driscoll SP; Prins A; Olmos E; Kunert KJ; Foyer CH
    J Exp Bot; 2006; 57(2):381-90. PubMed ID: 16371401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using tunable diode laser spectroscopy to measure carbon isotope discrimination and mesophyll conductance to CO₂ diffusion dynamically at different CO₂ concentrations.
    Tazoe Y; VON Caemmerer S; Estavillo GM; Evans JR
    Plant Cell Environ; 2011 Apr; 34(4):580-91. PubMed ID: 21251018
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability.
    Uehlein N; Otto B; Hanson DT; Fischer M; McDowell N; Kaldenhoff R
    Plant Cell; 2008 Mar; 20(3):648-57. PubMed ID: 18349152
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpaxP. deltoides).
    Miyazawa S; Livingston NJ; Turpin DH
    J Exp Bot; 2006; 57(2):373-80. PubMed ID: 16172139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves.
    Flexas J; Diaz-Espejo A; Galmés J; Kaldenhoff R; Medrano H; Ribas-Carbo M
    Plant Cell Environ; 2007 Oct; 30(10):1284-98. PubMed ID: 17727418
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mesophyll conductance to CO(2) transport estimated by two independent methods: effect of variable CO(2) concentration and abscisic acid.
    Vrábl D; Vasková M; Hronková M; Flexas J; Santrucek J
    J Exp Bot; 2009; 60(8):2315-23. PubMed ID: 19433478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The lack of mitochondrial complex I in a CMSII mutant of Nicotiana sylvestris increases photorespiration through an increased internal resistance to CO2 diffusion.
    Priault P; Tcherkez G; Cornic G; De Paepe R; Naik R; Ghashghaie J; Streb P
    J Exp Bot; 2006; 57(12):3195-207. PubMed ID: 16945981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of leaf age and tree size on stomatal and mesophyll limitations to photosynthesis in mountain beech (Nothofagus solandrii var. cliffortiodes).
    Whitehead D; Barbour MM; Griffin KL; Turnbull MH; Tissue DT
    Tree Physiol; 2011 Sep; 31(9):985-96. PubMed ID: 21515907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low stomatal and internal conductance to CO2 versus Rubisco deactivation as determinants of the photosynthetic decline of ageing evergreen leaves.
    Ethier GJ; Livingston NJ; Harrison DL; Black TA; Moran JA
    Plant Cell Environ; 2006 Dec; 29(12):2168-84. PubMed ID: 17081250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice.
    Sage TL; Sage RF
    Plant Cell Physiol; 2009 Apr; 50(4):756-72. PubMed ID: 19246459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.