These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 22300648)
1. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. Couturier M; Navarro D; Olivé C; Chevret D; Haon M; Favel A; Lesage-Meessen L; Henrissat B; Coutinho PM; Berrin JG BMC Genomics; 2012 Feb; 13():57. PubMed ID: 22300648 [TBL] [Abstract][Full Text] [Related]
2. The Maize Pathogen Ustilago maydis Secretes Glycoside Hydrolases and Carbohydrate Oxidases Directed toward Components of the Fungal Cell Wall. Reyre JL; Grisel S; Haon M; Navarro D; Ropartz D; Le Gall S; Record E; Sciara G; Tranquet O; Berrin JG; Bissaro B Appl Environ Microbiol; 2022 Dec; 88(23):e0158122. PubMed ID: 36354345 [TBL] [Abstract][Full Text] [Related]
3. Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Couturier M; Haon M; Coutinho PM; Henrissat B; Lesage-Meessen L; Berrin JG Appl Environ Microbiol; 2011 Jan; 77(1):237-46. PubMed ID: 21037302 [TBL] [Abstract][Full Text] [Related]
4. Activating Intrinsic Carbohydrate-Active Enzymes of the Smut Fungus Ustilago maydis for the Degradation of Plant Cell Wall Components. Geiser E; Reindl M; Blank LM; Feldbrügge M; Wierckx N; Schipper K Appl Environ Microbiol; 2016 Sep; 82(17):5174-85. PubMed ID: 27316952 [TBL] [Abstract][Full Text] [Related]
5. Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Häkkinen M; Arvas M; Oja M; Aro N; Penttilä M; Saloheimo M; Pakula TM Microb Cell Fact; 2012 Oct; 11():134. PubMed ID: 23035824 [TBL] [Abstract][Full Text] [Related]
7. Low-Cost Cellulase-Hemicellulase Mixture Secreted by Zhang Y; Yang J; Luo L; Wang E; Wang R; Liu L; Liu J; Yuan H Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936000 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a new aryl-alcohol oxidase secreted by the phytopathogenic fungus Ustilago maydis. Couturier M; Mathieu Y; Li A; Navarro D; Drula E; Haon M; Grisel S; Ludwig R; Berrin JG Appl Microbiol Biotechnol; 2016 Jan; 100(2):697-706. PubMed ID: 26452496 [TBL] [Abstract][Full Text] [Related]
9. Improving the fermentable sugar yields of wheat straw by high-temperature pre-hydrolysis with thermophilic enzymes of Malbranchea cinnamomea. Zhu N; Jin H; Kong X; Zhu Y; Ye X; Xi Y; Du J; Li B; Lou M; Shah GM Microb Cell Fact; 2020 Jul; 19(1):149. PubMed ID: 32711527 [TBL] [Abstract][Full Text] [Related]
10. Lignocellulolytic characterization and comparative secretome analysis of a Trichoderma erinaceum strain isolated from decaying sugarcane straw. da Silva DS; Dantzger M; Assis MA; Gallardo JCM; Teixeira GS; Missawa SK; Domingues RR; Carazzolle MF; Lunardi I; Leme AFP; Pereira GAG; Parreiras LS Fungal Biol; 2019 Apr; 123(4):330-340. PubMed ID: 30928041 [TBL] [Abstract][Full Text] [Related]
11. Comparative secretomic analysis of lignocellulose degradation by Lentinula edodes grown on microcrystalline cellulose, lignosulfonate and glucose. Cai Y; Gong Y; Liu W; Hu Y; Chen L; Yan L; Zhou Y; Bian Y J Proteomics; 2017 Jun; 163():92-101. PubMed ID: 28483534 [TBL] [Abstract][Full Text] [Related]
12. Fusarium verticillioides secretome as a source of auxiliary enzymes to enhance saccharification of wheat straw. Ravalason H; Grisel S; Chevret D; Favel A; Berrin JG; Sigoillot JC; Herpoël-Gimbert I Bioresour Technol; 2012 Jun; 114():589-96. PubMed ID: 22459963 [TBL] [Abstract][Full Text] [Related]