BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22300814)

  • 1. Epidermogenesis in a skin wound deep through the basement membrane contributes to scar formation.
    Yang L; Hashimoto K; Shirakata Y
    J Dermatol Sci; 2012 Mar; 65(3):224-6. PubMed ID: 22300814
    [No Abstract]   [Full Text] [Related]  

  • 2. Interactions between myofibroblast differentiation and epidermogenesis in constructing human living skin equivalents.
    Yang L; Hashimoto K; Tohyama M; Okazaki H; Dai X; Hanakawa Y; Sayama K; Shirakata Y
    J Dermatol Sci; 2012 Jan; 65(1):50-7. PubMed ID: 22169155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abnormalities in the basement membrane structure promote basal keratinocytes in the epidermis of hypertrophic scars to adopt a proliferative phenotype.
    Yang S; Sun Y; Geng Z; Ma K; Sun X; Fu X
    Int J Mol Med; 2016 May; 37(5):1263-73. PubMed ID: 26986690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tenascin expression during wound healing in human skin.
    Latijnhouwers MA; Bergers M; Van Bergen BH; Spruijt KI; Andriessen MP; Schalkwijk J
    J Pathol; 1996 Jan; 178(1):30-5. PubMed ID: 8778312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skin wound healing in different aged Xenopus laevis.
    Bertolotti E; Malagoli D; Franchini A
    J Morphol; 2013 Aug; 274(8):956-64. PubMed ID: 23640793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel therapies for scar reduction and regenerative healing of skin wounds.
    Rhett JM; Ghatnekar GS; Palatinus JA; O'Quinn M; Yost MJ; Gourdie RG
    Trends Biotechnol; 2008 Apr; 26(4):173-80. PubMed ID: 18295916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skin wound healing in axolotls: a scarless process.
    Lévesque M; Villiard E; Roy S
    J Exp Zool B Mol Dev Evol; 2010 Dec; 314(8):684-97. PubMed ID: 20718005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activated keratinocytes in the epidermis of hypertrophic scars.
    Machesney M; Tidman N; Waseem A; Kirby L; Leigh I
    Am J Pathol; 1998 May; 152(5):1133-41. PubMed ID: 9588880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention.
    Ferguson MW; O'Kane S
    Philos Trans R Soc Lond B Biol Sci; 2004 May; 359(1445):839-50. PubMed ID: 15293811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered proliferation and differentiation of human epidermis in cases of skin fibrosis after radiotherapy.
    Sivan V; Vozenin-Brotons MC; Tricaud Y; Lefaix JL; Cosset JM; Dubray B; Martin MT
    Int J Radiat Oncol Biol Phys; 2002 Jun; 53(2):385-93. PubMed ID: 12023143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transforming growth factor-beta(1), -beta(2), -beta(3), basic fibroblast growth factor and vascular endothelial growth factor expression in keratinocytes of burn scars.
    Hakvoort T; Altun V; van Zuijlen PP; de Boer WI; van Schadewij WA; van der Kwast TH
    Eur Cytokine Netw; 2000 Jun; 11(2):233-39. PubMed ID: 10903802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scarless healing of oral mucosa is characterized by faster resolution of inflammation and control of myofibroblast action compared to skin wounds in the red Duroc pig model.
    Mak K; Manji A; Gallant-Behm C; Wiebe C; Hart DA; Larjava H; Häkkinen L
    J Dermatol Sci; 2009 Dec; 56(3):168-80. PubMed ID: 19854029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ski, a modulator of wound healing and scar formation in the rat skin and rabbit ear.
    Li P; Liu P; Xiong RP; Chen XY; Zhao Y; Lu WP; Liu X; Ning YL; Yang N; Zhou YG
    J Pathol; 2011 Apr; 223(5):659-71. PubMed ID: 21341267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered expression of keratins during abnormal wound healing in human skin.
    Prathiba V; Rao KS; Gupta PD
    Cytobios; 2001; 104(405):43-51. PubMed ID: 11219730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basal membrane heparan sulphate proteoglycan expression during wound healing in human skin.
    Andriessen MP; van den Born J; Latijnhouwers MA; Bergers M; van de Kerkhof PC; Schalkwijk J
    J Pathol; 1997 Nov; 183(3):264-71. PubMed ID: 9422980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the histological morphology between normal skin and scar tissue.
    Yang SW; Geng ZJ; Ma K; Sun XY; Fu XB
    J Huazhong Univ Sci Technolog Med Sci; 2016 Apr; 36(2):265-269. PubMed ID: 27072974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct evidence for spatial and temporal regulation of transforming growth factor beta 1 expression during cutaneous wound healing.
    Kane CJ; Hebda PA; Mansbridge JN; Hanawalt PC
    J Cell Physiol; 1991 Jul; 148(1):157-73. PubMed ID: 1907288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of keratin 15 expression by transforming growth factor beta in vitro and by cutaneous injury in vivo.
    Werner S; Munz B
    Exp Cell Res; 2000 Jan; 254(1):80-90. PubMed ID: 10623468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dermabrasive scar revision. Immunohistochemical and ultrastructural evaluation.
    Harmon CB; Zelickson BD; Roenigk RK; Wayner EA; Hoffstrom B; Pittelkow MR; Brodland DG
    Dermatol Surg; 1995 Jun; 21(6):503-8. PubMed ID: 7539704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Appearance of tenascin in healing skin of the mouse: possible involvement in seaming of wounded tissues.
    Murakami R; Yamaoka I; Sakakura T
    Int J Dev Biol; 1989 Dec; 33(4):439-44. PubMed ID: 2484288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.