These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22301008)

  • 1. Biomechanics of human movement and its clinical applications.
    Lu TW; Chang CF
    Kaohsiung J Med Sci; 2012 Feb; 28(2 Suppl):S13-25. PubMed ID: 22301008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of human motion in sports biomechanics.
    Vaughan CL
    Exerc Sport Sci Rev; 1984; 12():373-416. PubMed ID: 6376138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the influence of muscle deactivation on other muscles and joints during gait motion.
    Komura T; Prokopow P; Nagano A
    J Biomech; 2004 Apr; 37(4):425-36. PubMed ID: 14996554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and validation of a general purpose robotic testing system for musculoskeletal applications.
    Noble LD; Colbrunn RW; Lee DG; van den Bogert AJ; Davis BL
    J Biomech Eng; 2010 Feb; 132(2):025001. PubMed ID: 20370251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer modeling and simulation of human movement. Applications in sport and rehabilitation.
    Neptune RR
    Phys Med Rehabil Clin N Am; 2000 May; 11(2):417-34, viii. PubMed ID: 10810769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating modelling and experiments to assess dynamic musculoskeletal function in humans.
    Fernandez JW; Pandy MG
    Exp Physiol; 2006 Mar; 91(2):371-82. PubMed ID: 16407475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Spatial reconstruction of human motion utilizing two dimension images and a biomechanical model].
    Yang F; Ding L; Yang C; Yuan X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):307-11. PubMed ID: 15884541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mathematical description of the body centre of mass 3D path in human and animal locomotion.
    Minetti AE; Cisotti C; Mian OS
    J Biomech; 2011 May; 44(8):1471-7. PubMed ID: 21463861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach.
    Corazza S; Mündermann L; Chaudhari AM; Demattio T; Cobelli C; Andriacchi TP
    Ann Biomed Eng; 2006 Jun; 34(6):1019-29. PubMed ID: 16783657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis and simulation of mechanical loads on the human musculoskeletal system: a methodological overview.
    van den Bogert AJ
    Exerc Sport Sci Rev; 1994; 22():23-51. PubMed ID: 7925545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Migration and cyclic motion of a new short-stemmed hip prosthesis--a biomechanical in vitro study.
    Westphal FM; Bishop N; Honl M; Hille E; Püschel K; Morlock MM
    Clin Biomech (Bristol); 2006 Oct; 21(8):834-40. PubMed ID: 16806616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the neuromechanical events of locomotion at varying gravitational levels.
    Day MK; Monti RJ; Vallance K; McGuan S; Roy RR; Edgerton VR
    J Gravit Physiol; 2000 Jul; 7(2):P35-7. PubMed ID: 12697539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-based estimation of muscle forces exerted during movements.
    Erdemir A; McLean S; Herzog W; van den Bogert AJ
    Clin Biomech (Bristol); 2007 Feb; 22(2):131-54. PubMed ID: 17070969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The locomotion laboratory as a clinical assessment system.
    Winter DA
    Med Prog Technol; 1976; 4(3):95-106. PubMed ID: 138792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic motion planning of 3D human locomotion using gradient-based optimization.
    Kim HJ; Wang Q; Rahmatalla S; Swan CC; Arora JS; Abdel-Malek K; Assouline JG
    J Biomech Eng; 2008 Jun; 130(3):031002. PubMed ID: 18532851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of the matrix method for the study of human motion: theory and applications.
    Li ZM; Fisk JA; Woo SL
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):375-83. PubMed ID: 14564993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanics of human movement with applications to the study of human locomotion.
    Winter DA
    Crit Rev Biomed Eng; 1984; 9(4):287-314. PubMed ID: 6368126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic analysis of over-determinate biomechanical systems.
    Andersen MS; Damsgaard M; Rasmussen J
    Comput Methods Biomech Biomed Engin; 2009 Aug; 12(4):371-84. PubMed ID: 18949590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of muscle response using three-dimensional musculoskeletal models before impact situation: a simulation study.
    Bae TS; Loan P; Choi K; Hong D; Mun MS
    J Biomech Eng; 2010 Dec; 132(12):121011. PubMed ID: 21142325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.