BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22301304)

  • 1. Comment on "Abiotic pyrite formation produces a large Fe isotope fractionation".
    Czaja AD; Johnson CM; Yamaguchi KE; Beard BL
    Science; 2012 Feb; 335(6068):538; author reply 538. PubMed ID: 22301304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abiotic pyrite formation produces a large Fe isotope fractionation.
    Guilbaud R; Butler IB; Ellam RM
    Science; 2011 Jun; 332(6037):1548-51. PubMed ID: 21700871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Fe and S isotope analyses in pyrite from the 3.2 Ga Mendon Formation (Barberton Greenstone Belt, South Africa): Evidence for early microbial iron reduction.
    Marin-Carbonne J; Busigny V; Miot J; Rollion-Bard C; Muller E; Drabon N; Jacob D; Pont S; Robyr M; Bontognali TRR; François C; Reynaud S; Van Zuilen M; Philippot P
    Geobiology; 2020 May; 18(3):306-325. PubMed ID: 32118348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comment on "Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state".
    Yamaguchi KE; Ohmoto H
    Science; 2006 Jan; 311(5758):177; author reply 177. PubMed ID: 16410508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable iron isotopes and microbial mediation in red pigmentation of the Rosso Ammonitico (mid-late Jurassic, Verona area, Italy).
    Préat AR; de Jong JT; Mamet BL; Mattielli N
    Astrobiology; 2008 Aug; 8(4):841-57. PubMed ID: 18759562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates.
    d'Abzac FX; Beard BL; Czaja AD; Konishi H; Schauer JJ; Johnson CM
    Anal Chem; 2013 Dec; 85(24):11885-92. PubMed ID: 24261311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater.
    Percak-Dennett EM; Beard BL; Xu H; Konishi H; Johnson CM; Roden EE
    Geobiology; 2011 May; 9(3):205-20. PubMed ID: 21504536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unprecedented
    Drake H; Whitehouse MJ; Heim C; Reiners PW; Tillberg M; Hogmalm KJ; Dopson M; Broman C; Åström ME
    Geobiology; 2018 Sep; 16(5):556-574. PubMed ID: 29947123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On apparent mass-independent fractionation (MIF) signatures from phase partitioning at equilibrium.
    Campisi LD
    Isotopes Environ Health Stud; 2019 Dec; 55(6):607-629. PubMed ID: 31711301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron isotope fractionation by biogeochemical processes in mine tailings.
    Herbert RB; Schippers A
    Environ Sci Technol; 2008 Feb; 42(4):1117-22. PubMed ID: 18351081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does a Heavy Fe-Isotope Composition of Akilia Quartz-Amphibole-Pyroxene Rocks Necessitate a BIF Origin?
    Whitehouse MJ; Schoenberg R; Fedo CM; Kamber BS
    Astrobiology; 2015 Oct; 15(10):816-24. PubMed ID: 26496524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(II)-oxidizing bacteria.
    Kappler A; Johnson CM; Crosby HA; Beard BL; Newman DK
    Geochim Cosmochim Acta; 2010 May; 74(10):2826-2842. PubMed ID: 21076519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ trace metal analysis of Neoarchaean--Ordovician shallow-marine microbial-carbonate-hosted pyrites.
    Gallagher M; Turner EC; Kamber BS
    Geobiology; 2015 Jul; 13(4):316-39. PubMed ID: 25917609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fe isotope fractionation during equilibration of Fe-organic complexes.
    Morgan JL; Wasylenki LE; Nuester J; Anbar AD
    Environ Sci Technol; 2010 Aug; 44(16):6095-101. PubMed ID: 20704204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems.
    Qiu G; Luo Y; Chen C; Lv Q; Tan W; Liu F; Liu C
    J Environ Sci (China); 2016 Jul; 45():164-76. PubMed ID: 27372130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state.
    Rouxel OJ; Bekker A; Edwards KJ
    Science; 2005 Feb; 307(5712):1088-91. PubMed ID: 15718467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large sulfur isotope fractionations associated with Neoarchean microbial sulfate reduction.
    Zhelezinskaia I; Kaufman AJ; Farquhar J; Cliff J
    Science; 2014 Nov; 346(6210):742-4. PubMed ID: 25378623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass-dependent and -independent signature of Fe isotopes in magnetotactic bacteria.
    Amor M; Busigny V; Louvat P; Gélabert A; Cartigny P; Durand-Dubief M; Ona-Nguema G; Alphandéry E; Chebbi I; Guyot F
    Science; 2016 May; 352(6286):705-8. PubMed ID: 27151868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Neoarchaean surficial sulphur cycle: An alternative hypothesis based on analogies with 20th-century atmospheric lead.
    Gallagher M; Whitehouse MJ; Kamber BS
    Geobiology; 2017 May; 15(3):385-400. PubMed ID: 28299862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron Stable Isotopes in Bulk Soil and Sequential Extracted Fractions Trace Fe Redox Cycling in Paddy Soils.
    Qi YH; Cheng W; Nan XY; Yang F; Li J; Li DC; Lundstrom CC; Yu HM; Zhang GL; Huang F
    J Agric Food Chem; 2020 Aug; 68(31):8143-8150. PubMed ID: 32633945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.