BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22301304)

  • 21. Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction.
    Crosby HA; Johnson CM; Roden EE; Beard BL
    Environ Sci Technol; 2005 Sep; 39(17):6698-704. PubMed ID: 16190229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes.
    Farquhar J; Cliff J; Zerkle AL; Kamyshny A; Poulton SW; Claire M; Adams D; Harms B
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17638-43. PubMed ID: 23407162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy.
    Li W; Joshi SR; Hou G; Burdige DJ; Sparks DL; Jaisi DP
    Environ Sci Technol; 2015 Jan; 49(1):203-11. PubMed ID: 25469633
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Suppressive effects of ferric-catecholate complexes on pyrite oxidation.
    Li X; Hiroyoshi N; Tabelin CB; Naruwa K; Harada C; Ito M
    Chemosphere; 2019 Jan; 214():70-78. PubMed ID: 30257197
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial acceleration of aerobic pyrite oxidation at circumneutral pH.
    Percak-Dennett E; He S; Converse B; Konishi H; Xu H; Corcoran A; Noguera D; Chan C; Bhattacharyya A; Borch T; Boyd E; Roden EE
    Geobiology; 2017 Sep; 15(5):690-703. PubMed ID: 28452176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of Authigenic Pyrite from Methane-bearing Sediments for In Situ Sulfur Isotope Analysis Using SIMS.
    Lin Z; Sun X; Peckmann J; Lu Y; Strauss H; Xu L; Lu H; Teichert BMA
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28892022
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iron Isotope Fractionations Reveal a Finite Bioavailable Fe Pool for Structural Fe(III) Reduction in Nontronite.
    Shi B; Liu K; Wu L; Li W; Smeaton CM; Beard BL; Johnson CM; Roden EE; Van Cappellen P
    Environ Sci Technol; 2016 Aug; 50(16):8661-9. PubMed ID: 27291525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uniquely low stable iron isotopic signatures in deep marine sediments caused by Rayleigh distillation.
    Köster M; Staubwasser M; Meixner A; Kasemann SA; Manners HR; Morono Y; Inagaki F; Heuer VB; Kasten S; Henkel S
    Sci Rep; 2023 Jun; 13(1):10281. PubMed ID: 37355766
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pyrite and Organic Compounds Coexisting in Intrusive Mafic Xenoliths (Hyblean Plateau, Sicily): Implications for Subsurface Abiogenesis.
    Scribano V; Simakov SK; Finocchiaro C; Correale A; Scirè S
    Orig Life Evol Biosph; 2019 Jun; 49(1-2):19-47. PubMed ID: 31302843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stable iron isotope fractionation between aqueous Fe(II) and hydrous ferric oxide.
    Wu L; Beard BL; Roden EE; Johnson CM
    Environ Sci Technol; 2011 Mar; 45(5):1847-52. PubMed ID: 21294566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidative transformation of iron monosulfides and pyrite in estuarine sediments: Implications for trace metals mobilisation.
    Choppala G; Bush R; Moon E; Ward N; Wang Z; Bolan N; Sullivan L
    J Environ Manage; 2017 Jan; 186(Pt 2):158-166. PubMed ID: 27394083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sedimentary pyrite sulfur isotopes track the local dynamics of the Peruvian oxygen minimum zone.
    Pasquier V; Fike DA; Halevy I
    Nat Commun; 2021 Jul; 12(1):4403. PubMed ID: 34285238
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks.
    Tangalos GE; Beard BL; Johnson CM; Alpers CN; Shelobolina ES; Xu H; Konishi H; Roden EE
    Geobiology; 2010 Jun; 8(3):197-208. PubMed ID: 20374296
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of Fe-sulfides in cultures of sulfate-reducing bacteria.
    Gramp JP; Bigham JM; Jones FS; Tuovinen OH
    J Hazard Mater; 2010 Mar; 175(1-3):1062-7. PubMed ID: 19962824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reductive transformation of 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and nitroglycerin by pyrite and magnetite.
    Oh SY; Chiu PC; Cha DK
    J Hazard Mater; 2008 Oct; 158(2-3):652-5. PubMed ID: 18328622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iron Isotope Fractionation during Fe(II) Oxidation Mediated by the Oxygen-Producing Marine Cyanobacterium Synechococcus PCC 7002.
    Swanner ED; Bayer T; Wu W; Hao L; Obst M; Sundman A; Byrne JM; Michel FM; Kleinhanns IC; Kappler A; Schoenberg R
    Environ Sci Technol; 2017 May; 51(9):4897-4906. PubMed ID: 28402123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of pyrite grain size on the final oxygen isotope difference between sulphate and water in aerobic pyrite oxidation experiments.
    Heidel C; Tichomirowa M; Junghans M
    Isotopes Environ Health Stud; 2009 Dec; 45(4):321-42. PubMed ID: 20183241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crossing redox boundaries--aquifer redox history and effects on iron mineralogy and arsenic availability.
    Banning A; Rüde TR; Dölling B
    J Hazard Mater; 2013 Nov; 262():905-14. PubMed ID: 23280400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of selenium incorporated in pyrite and mackinawite as determined by XAFS analyses.
    Diener A; Neumann T; Kramar U; Schild D
    J Contam Hydrol; 2012 May; 133():30-9. PubMed ID: 22484403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atom exchange between aqueous Fe(II) and goethite: an Fe isotope tracer study.
    Handler RM; Beard BL; Johnson CM; Scherer MM
    Environ Sci Technol; 2009 Feb; 43(4):1102-7. PubMed ID: 19320165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.