These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 22301316)
1. Natural variation in a chloride channel subunit confers avermectin resistance in C. elegans. Ghosh R; Andersen EC; Shapiro JA; Gerke JP; Kruglyak L Science; 2012 Feb; 335(6068):574-8. PubMed ID: 22301316 [TBL] [Abstract][Full Text] [Related]
2. The genetics of ivermectin resistance in Caenorhabditis elegans. Dent JA; Smith MM; Vassilatis DK; Avery L Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2674-9. PubMed ID: 10716995 [TBL] [Abstract][Full Text] [Related]
3. Evolutionary relationship of the ligand-gated ion channels and the avermectin-sensitive, glutamate-gated chloride channels. Vassilatis DK; Elliston KO; Paress PS; Hamelin M; Arena JP; Schaeffer JM; Van der Ploeg LH; Cully DF J Mol Evol; 1997 May; 44(5):501-8. PubMed ID: 9115174 [TBL] [Abstract][Full Text] [Related]
4. Evolution. Surviving in a toxic world. Wolstenholme AJ Science; 2012 Feb; 335(6068):545-6. PubMed ID: 22301309 [No Abstract] [Full Text] [Related]
5. Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Cully DF; Vassilatis DK; Liu KK; Paress PS; Van der Ploeg LH; Schaeffer JM; Arena JP Nature; 1994 Oct; 371(6499):707-11. PubMed ID: 7935817 [TBL] [Abstract][Full Text] [Related]
6. The avermectin receptors of Haemonchus contortus and Caenorhabditis elegans. Yates DM; Portillo V; Wolstenholme AJ Int J Parasitol; 2003 Sep; 33(11):1183-93. PubMed ID: 13678634 [TBL] [Abstract][Full Text] [Related]
7. GLC-3: a novel fipronil and BIDN-sensitive, but picrotoxinin-insensitive, L-glutamate-gated chloride channel subunit from Caenorhabditis elegans. Horoszok L; Raymond V; Sattelle DB; Wolstenholme AJ Br J Pharmacol; 2001 Mar; 132(6):1247-54. PubMed ID: 11250875 [TBL] [Abstract][Full Text] [Related]
8. Genomic organization of an avermectin receptor subunit from Haemonchus contortus and expression of its putative promoter region in Caenorhabditis elegans. Liu J; Dent JA; Beech RN; Prichard RK Mol Biochem Parasitol; 2004 Apr; 134(2):267-74. PubMed ID: 15003846 [TBL] [Abstract][Full Text] [Related]
9. Genetic and biochemical evidence for a novel avermectin-sensitive chloride channel in Caenorhabditis elegans. Isolation and characterization. Vassilatis DK; Arena JP; Plasterk RH; Wilkinson HA; Schaeffer JM; Cully DF; Van der Ploeg LH J Biol Chem; 1997 Dec; 272(52):33167-74. PubMed ID: 9407104 [TBL] [Abstract][Full Text] [Related]
10. avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. Dent JA; Davis MW; Avery L EMBO J; 1997 Oct; 16(19):5867-79. PubMed ID: 9312045 [TBL] [Abstract][Full Text] [Related]
11. Glutamate-gated chloride channels of Haemonchus contortus restore drug sensitivity to ivermectin resistant Caenorhabditis elegans. Glendinning SK; Buckingham SD; Sattelle DB; Wonnacott S; Wolstenholme AJ PLoS One; 2011; 6(7):e22390. PubMed ID: 21818319 [TBL] [Abstract][Full Text] [Related]
12. A comparison of the effects of ivermectin and moxidectin on the nematode Caenorhabditis elegans. Ardelli BF; Stitt LE; Tompkins JB; Prichard RK Vet Parasitol; 2009 Oct; 165(1-2):96-108. PubMed ID: 19631471 [TBL] [Abstract][Full Text] [Related]
13. Two novel loci underlie natural differences in Caenorhabditis elegans abamectin responses. Evans KS; Wit J; Stevens L; Hahnel SR; Rodriguez B; Park G; Zamanian M; Brady SC; Chao E; Introcaso K; Tanny RE; Andersen EC PLoS Pathog; 2021 Mar; 17(3):e1009297. PubMed ID: 33720993 [TBL] [Abstract][Full Text] [Related]
14. Quantifying the fitness effects of resistance alleles with and without anthelmintic selection pressure using Caenorhabditis elegans. Shaver AO; Miller IR; Schaye ES; Moya ND; Collins JB; Wit J; Blanco AH; Shao FM; Andersen EJ; Khan SA; Paredes G; Andersen EC PLoS Pathog; 2024 May; 20(5):e1012245. PubMed ID: 38768235 [TBL] [Abstract][Full Text] [Related]
15. Haemonchus contortus: selection at a glutamate-gated chloride channel gene in ivermectin- and moxidectin-selected strains. Blackhall WJ; Pouliot JF; Prichard RK; Beech RN Exp Parasitol; 1998 Sep; 90(1):42-8. PubMed ID: 9709029 [TBL] [Abstract][Full Text] [Related]
17. Selective elimination of glutamate activation and introduction of fluorescent proteins into a Caenorhabditis elegans chloride channel. Li P; Slimko EM; Lester HA FEBS Lett; 2002 Sep; 528(1-3):77-82. PubMed ID: 12297283 [TBL] [Abstract][Full Text] [Related]
18. Characterization of glutamate-gated chloride channels in the pharynx of wild-type and mutant Caenorhabditis elegans delineates the role of the subunit GluCl-alpha2 in the function of the native receptor. Pemberton DJ; Franks CJ; Walker RJ; Holden-Dye L Mol Pharmacol; 2001 May; 59(5):1037-43. PubMed ID: 11306685 [TBL] [Abstract][Full Text] [Related]
19. Identification and functional expression of a glutamate- and avermectin-gated chloride channel from Caligus rogercresseyi, a southern Hemisphere sea louse affecting farmed fish. Cornejo I; Andrini O; Niemeyer MI; Marabolí V; González-Nilo FD; Teulon J; Sepúlveda FV; Cid LP PLoS Pathog; 2014 Sep; 10(9):e1004402. PubMed ID: 25255455 [TBL] [Abstract][Full Text] [Related]
20. Picrotoxin blockade of invertebrate glutamate-gated chloride channels: subunit dependence and evidence for binding within the pore. Etter A; Cully DF; Liu KK; Reiss B; Vassilatis DK; Schaeffer JM; Arena JP J Neurochem; 1999 Jan; 72(1):318-26. PubMed ID: 9886084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]