BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22301319)

  • 1. Sequential signaling crosstalk regulates endomesoderm segregation in sea urchin embryos.
    Sethi AJ; Wikramanayake RM; Angerer RC; Range RC; Angerer LM
    Science; 2012 Feb; 335(6068):590-3. PubMed ID: 22301319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo.
    Croce JC; McClay DR
    Development; 2010 Jan; 137(1):83-91. PubMed ID: 20023163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LvGroucho and nuclear beta-catenin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo.
    Range RC; Venuti JM; McClay DR
    Dev Biol; 2005 Mar; 279(1):252-67. PubMed ID: 15708573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wnt6 activates endoderm in the sea urchin gene regulatory network.
    Croce J; Range R; Wu SY; Miranda E; Lhomond G; Peng JC; Lepage T; McClay DR
    Development; 2011 Aug; 138(15):3297-306. PubMed ID: 21750039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An early global role for Axin is required for correct patterning of the anterior-posterior axis in the sea urchin embryo.
    Sun H; Peng CJ; Wang L; Feng H; Wikramanayake AH
    Development; 2021 Mar; 148(7):. PubMed ID: 33688076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo.
    Röttinger E; Croce J; Lhomond G; Besnardeau L; Gache C; Lepage T
    Development; 2006 Nov; 133(21):4341-53. PubMed ID: 17038519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dose-dependent nuclear β-catenin response segregates endomesoderm along the sea star primary axis.
    McCauley BS; Akyar E; Saad HR; Hinman VF
    Development; 2015 Jan; 142(1):207-17. PubMed ID: 25516976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene regulatory network interactions in sea urchin endomesoderm induction.
    Sethi AJ; Angerer RC; Angerer LM
    PLoS Biol; 2009 Feb; 7(2):e1000029. PubMed ID: 19192949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frizzled1/2/7 signaling directs β-catenin nuclearisation and initiates endoderm specification in macromeres during sea urchin embryogenesis.
    Lhomond G; McClay DR; Gache C; Croce JC
    Development; 2012 Feb; 139(4):816-25. PubMed ID: 22274701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A framework for the establishment of a cnidarian gene regulatory network for "endomesoderm" specification: the inputs of ß-catenin/TCF signaling.
    Röttinger E; Dahlin P; Martindale MQ
    PLoS Genet; 2012; 8(12):e1003164. PubMed ID: 23300467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage.
    Peter IS; Davidson EH
    Dev Biol; 2010 Apr; 340(2):188-99. PubMed ID: 19895806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blocking Dishevelled signaling in the noncanonical Wnt pathway in sea urchins disrupts endoderm formation and spiculogenesis, but not secondary mesoderm formation.
    Byrum CA; Xu R; Bince JM; McClay DR; Wikramanayake AH
    Dev Dyn; 2009 Jul; 238(7):1649-65. PubMed ID: 19449300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct Frizzled receptors independently mediate endomesoderm specification and primary archenteron invagination during gastrulation in Nematostella.
    Wijesena N; Sun H; Kumburegama S; Wikramanayake AH
    Dev Biol; 2022 Jan; 481():215-225. PubMed ID: 34767794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biphasic role of non-canonical Wnt16 signaling during early anterior-posterior patterning and morphogenesis of the sea urchin embryo.
    Martínez-Bartolomé M; Range RC
    Development; 2019 Dec; 146(24):. PubMed ID: 31822478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids.
    Erkenbrack EM; Davidson EH; Peter IS
    Development; 2018 Dec; 145(24):. PubMed ID: 30470703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LvNumb works synergistically with Notch signaling to specify non-skeletal mesoderm cells in the sea urchin embryo.
    Range RC; Glenn TD; Miranda E; McClay DR
    Development; 2008 Aug; 135(14):2445-54. PubMed ID: 18550713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network.
    Minokawa T; Wikramanayake AH; Davidson EH
    Dev Biol; 2005 Dec; 288(2):545-58. PubMed ID: 16289024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential regulation of disheveled in a novel vegetal cortical domain in sea urchin eggs and embryos: implications for the localized activation of canonical Wnt signaling.
    Peng CJ; Wikramanayake AH
    PLoS One; 2013; 8(11):e80693. PubMed ID: 24236196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antagonistic BMP-cWNT signaling in the cnidarian
    Wijesena N; Simmons DK; Martindale MQ
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):E5608-E5615. PubMed ID: 28652368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.