BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22301813)

  • 1. Assaying the kinase activity of LRRK2 in vitro.
    Lewis PA
    J Vis Exp; 2012 Jan; (59):. PubMed ID: 22301813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity.
    Jaleel M; Nichols RJ; Deak M; Campbell DG; Gillardon F; Knebel A; Alessi DR
    Biochem J; 2007 Jul; 405(2):307-17. PubMed ID: 17447891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic mechanistic studies of wild-type leucine-rich repeat kinase 2: characterization of the kinase and GTPase activities.
    Liu M; Dobson B; Glicksman MA; Yue Z; Stein RL
    Biochemistry; 2010 Mar; 49(9):2008-17. PubMed ID: 20146535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a high-throughput AlphaScreen assay measuring full-length LRRK2(G2019S) kinase activity using moesin protein substrate.
    Pedro L; PadrĂ³s J; Beaudet L; Schubert HD; Gillardon F; Dahan S
    Anal Biochem; 2010 Sep; 404(1):45-51. PubMed ID: 20434426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment.
    Klein CL; Rovelli G; Springer W; Schall C; Gasser T; Kahle PJ
    J Neurochem; 2009 Nov; 111(3):703-15. PubMed ID: 19712061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity.
    Guo L; Gandhi PN; Wang W; Petersen RB; Wilson-Delfosse AL; Chen SG
    Exp Cell Res; 2007 Oct; 313(16):3658-70. PubMed ID: 17706965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of GTPase activity to LRRK2-associated Parkinson disease.
    Tsika E; Moore DJ
    Small GTPases; 2013; 4(3):164-70. PubMed ID: 24025585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Roc-COR tandem domain of leucine-rich repeat kinase 2 forms dimers and exhibits conventional Ras-like GTPase properties.
    Mills RD; Liang LY; Lio DS; Mok YF; Mulhern TD; Cao G; Griffin M; Kenche VB; Culvenor JG; Cheng HC
    J Neurochem; 2018 Nov; 147(3):409-428. PubMed ID: 30091236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autophosphorylation in the leucine-rich repeat kinase 2 (LRRK2) GTPase domain modifies kinase and GTP-binding activities.
    Webber PJ; Smith AD; Sen S; Renfrow MB; Mobley JA; West AB
    J Mol Biol; 2011 Sep; 412(1):94-110. PubMed ID: 21806997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical characterization of highly purified leucine-rich repeat kinases 1 and 2 demonstrates formation of homodimers.
    Civiero L; Vancraenenbroeck R; Belluzzi E; Beilina A; Lobbestael E; Reyniers L; Gao F; Micetic I; De Maeyer M; Bubacco L; Baekelandt V; Cookson MR; Greggio E; Taymans JM
    PLoS One; 2012; 7(8):e43472. PubMed ID: 22952686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the autophosphorylation sites of LRRK2.
    Kamikawaji S; Ito G; Iwatsubo T
    Biochemistry; 2009 Nov; 48(46):10963-75. PubMed ID: 19824698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants.
    Li X; Tan YC; Poulose S; Olanow CW; Huang XY; Yue Z
    J Neurochem; 2007 Oct; 103(1):238-47. PubMed ID: 17623048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding.
    Taymans JM; Vancraenenbroeck R; Ollikainen P; Beilina A; Lobbestael E; De Maeyer M; Baekelandt V; Cookson MR
    PLoS One; 2011; 6(8):e23207. PubMed ID: 21858031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leucine-rich repeat kinase 2 (LRRK2) cellular biology: a review of recent advances in identifying physiological substrates and cellular functions.
    Drolet RE; Sanders JM; Kern JT
    J Neurogenet; 2011 Dec; 25(4):140-51. PubMed ID: 22077787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of compounds that inhibit the kinase activity of leucine-rich repeat kinase 2.
    Covy JP; Giasson BI
    Biochem Biophys Res Commun; 2009 Jan; 378(3):473-7. PubMed ID: 19027715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational heterogeneity of the Roc domains in C. tepidum Roc-COR and implications for human LRRK2 Parkinson mutations.
    Rudi K; Ho FY; Gilsbach BK; Pots H; Wittinghofer A; Kortholt A; Klare JP
    Biosci Rep; 2015 Aug; 35(5):. PubMed ID: 26310572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Parkinson's disease kinase LRRK2 autophosphorylates its GTPase domain at multiple sites.
    Greggio E; Taymans JM; Zhen EY; Ryder J; Vancraenenbroeck R; Beilina A; Sun P; Deng J; Jaffe H; Baekelandt V; Merchant K; Cookson MR
    Biochem Biophys Res Commun; 2009 Nov; 389(3):449-54. PubMed ID: 19733152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of leucine-rich repeat kinase 2 : enzymological properties and novel assays.
    Anand VS; Reichling LJ; Lipinski K; Stochaj W; Duan W; Kelleher K; Pungaliya P; Brown EL; Reinhart PH; Somberg R; Hirst WD; Riddle SM; Braithwaite SP
    FEBS J; 2009 Jan; 276(2):466-78. PubMed ID: 19076219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson's disease.
    Nichols RJ; Dzamko N; Hutti JE; Cantley LC; Deak M; Moran J; Bamborough P; Reith AD; Alessi DR
    Biochem J; 2009 Oct; 424(1):47-60. PubMed ID: 19740074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human leucine-rich repeat kinase 1 and 2: intersecting or unrelated functions?
    Civiero L; Bubacco L
    Biochem Soc Trans; 2012 Oct; 40(5):1095-101. PubMed ID: 22988872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.