BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22301813)

  • 21. Phosphorylation of 4E-BP1 in the mammalian brain is not altered by LRRK2 expression or pathogenic mutations.
    Trancikova A; Mamais A; Webber PJ; Stafa K; Tsika E; Glauser L; West AB; Bandopadhyay R; Moore DJ
    PLoS One; 2012; 7(10):e47784. PubMed ID: 23082216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A High-Throughput Screen to Identify LRRK2 Kinase Inhibitors for the Treatment of Parkinson's Disease Using RapidFire Mass Spectrometry.
    Leveridge M; Collier L; Edge C; Hardwicke P; Leavens B; Ratcliffe S; Rees M; Stasi LP; Nadin A; Reith AD
    J Biomol Screen; 2016 Feb; 21(2):145-55. PubMed ID: 26403521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of LRRK2 kinase activity in the pathogenesis of Parkinson's disease.
    Greggio E
    Biochem Soc Trans; 2012 Oct; 40(5):1058-62. PubMed ID: 22988865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2.
    Vancraenenbroeck R; Lobbestael E; Weeks SD; Strelkov SV; Baekelandt V; Taymans JM; De Maeyer M
    Biochim Biophys Acta; 2012 Mar; 1824(3):450-60. PubMed ID: 22251894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular biology changes associated with LRRK2 mutations in Parkinson's disease.
    Lu YW; Tan EK
    J Neurosci Res; 2008 Jul; 86(9):1895-901. PubMed ID: 18338801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leucine-rich repeat kinase 2: relevance to Parkinson's disease.
    Guo L; Wang W; Chen SG
    Int J Biochem Cell Biol; 2006; 38(9):1469-75. PubMed ID: 16600664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measuring the activity of leucine-rich repeat kinase 2: a kinase involved in Parkinson's disease.
    Lee BD; Li X; Dawson TM; Dawson VL
    Methods Mol Biol; 2012; 795():45-54. PubMed ID: 21960214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New biochemical approaches towards understanding the Parkinson's disease-associated kinase, LRRK2.
    Liou GY; Gallo KA
    Biochem J; 2009 Oct; 424(1):e1-3. PubMed ID: 19839940
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphopeptide analysis reveals two discrete clusters of phosphorylation in the N-terminus and the Roc domain of the Parkinson-disease associated protein kinase LRRK2.
    Gloeckner CJ; Boldt K; von Zweydorf F; Helm S; Wiesent L; Sarioglu H; Ueffing M
    J Proteome Res; 2010 Apr; 9(4):1738-45. PubMed ID: 20108944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The GTPase function of LRRK2.
    Taymans JM
    Biochem Soc Trans; 2012 Oct; 40(5):1063-9. PubMed ID: 22988866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ROCO kinase activity is controlled by internal GTPase function.
    Weiss B
    Sci Signal; 2008 Jun; 1(23):pe27. PubMed ID: 18544747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. LRRK2 in Parkinson's disease: function in cells and neurodegeneration.
    Webber PJ; West AB
    FEBS J; 2009 Nov; 276(22):6436-44. PubMed ID: 19804415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LRRK2 pathobiology in Parkinson's disease.
    Martin I; Kim JW; Dawson VL; Dawson TM
    J Neurochem; 2014 Dec; 131(5):554-65. PubMed ID: 25251388
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of the WD40 domain dimer of LRRK2.
    Zhang P; Fan Y; Ru H; Wang L; Magupalli VG; Taylor SS; Alessi DR; Wu H
    Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1579-1584. PubMed ID: 30635421
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding the GTPase Activity of LRRK2: Regulation, Function, and Neurotoxicity.
    Nguyen AP; Moore DJ
    Adv Neurobiol; 2017; 14():71-88. PubMed ID: 28353279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Leucine-rich repeat kinase 2 (LRRK2): a key player in the pathogenesis of Parkinson's disease.
    Gandhi PN; Chen SG; Wilson-Delfosse AL
    J Neurosci Res; 2009 May; 87(6):1283-95. PubMed ID: 19025767
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GTPase activity plays a key role in the pathobiology of LRRK2.
    Xiong Y; Coombes CE; Kilaru A; Li X; Gitler AD; Bowers WJ; Dawson VL; Dawson TM; Moore DJ
    PLoS Genet; 2010 Apr; 6(4):e1000902. PubMed ID: 20386743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of an enzyme-linked immunosorbent assay for detection of cellular and in vivo LRRK2 S935 phosphorylation.
    Delbroek L; Van Kolen K; Steegmans L; da Cunha R; Mandemakers W; Daneels G; De Bock PJ; Zhang J; Gevaert K; De Strooper B; Alessi DR; Verstreken P; Moechars DW
    J Pharm Biomed Anal; 2013 Mar; 76():49-58. PubMed ID: 23313773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical genetic approach identifies microtubule affinity-regulating kinase 1 as a leucine-rich repeat kinase 2 substrate.
    Krumova P; Reyniers L; Meyer M; Lobbestael E; Stauffer D; Gerrits B; Muller L; Hoving S; Kaupmann K; Voshol J; Fabbro D; Bauer A; Rovelli G; Taymans JM; Bouwmeester T; Baekelandt V
    FASEB J; 2015 Jul; 29(7):2980-92. PubMed ID: 25854701
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ARHGEF7 (Beta-PIX) acts as guanine nucleotide exchange factor for leucine-rich repeat kinase 2.
    Haebig K; Gloeckner CJ; Miralles MG; Gillardon F; Schulte C; Riess O; Ueffing M; Biskup S; Bonin M
    PLoS One; 2010 Oct; 5(10):e13762. PubMed ID: 21048939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.