These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22302020)

  • 41. The behavioral effects of a mixed efficacy antinociceptive peptide, VRP26, following chronic administration in mice.
    Anand JP; Boyer BT; Mosberg HI; Jutkiewicz EM
    Psychopharmacology (Berl); 2016 Jul; 233(13):2479-87. PubMed ID: 27117141
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Possible involvement of mu1-opioid receptors in the fentanyl- or morphine-induced antinociception at supraspinal and spinal sites.
    Narita M; Imai S; Itou Y; Yajima Y; Suzuki T
    Life Sci; 2002 Apr; 70(20):2341-54. PubMed ID: 12150199
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Supra-additive effects of tramadol and acetaminophen in a human pain model.
    Filitz J; Ihmsen H; Günther W; Tröster A; Schwilden H; Schüttler J; Koppert W
    Pain; 2008 Jun; 136(3):262-270. PubMed ID: 17709207
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Potentiation of delta 9-tetrahydrocannabinol-induced analgesia by morphine in mice: involvement of mu- and kappa-opioid receptors.
    Reche I; Fuentes JA; Ruiz-Gayo M
    Eur J Pharmacol; 1996 Dec; 318(1):11-6. PubMed ID: 9007506
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Morphine can produce analgesia via spinal kappa opioid receptors in the absence of mu opioid receptors.
    Yamada H; Shimoyama N; Sora I; Uhl GR; Fukuda Y; Moriya H; Shimoyama M
    Brain Res; 2006 Apr; 1083(1):61-9. PubMed ID: 16530171
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Supraspinal antinociceptive effect of apelin-13 in a mouse visceral pain model.
    Lv SY; Qin YJ; Wang NB; Yang YJ; Chen Q
    Peptides; 2012 Sep; 37(1):165-70. PubMed ID: 22732665
    [TBL] [Abstract][Full Text] [Related]  

  • 47. mu/delta Cooperativity and opposing kappa-opioid effects in nucleus accumbens-mediated antinociception in the rat.
    Schmidt BL; Tambeli CH; Levine JD; Gear RW
    Eur J Neurosci; 2002 Mar; 15(5):861-8. PubMed ID: 11906528
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of the norepinephrine transporter (NET) inhibition on μ-opioid receptor (MOR)-induced anti-nociception in a bone cancer pain model.
    Ono H; Nakamura A; Kanbara T; Minami K; Shinohara S; Sakaguchi G; Kanemasa T
    J Pharmacol Sci; 2014; 125(3):264-73. PubMed ID: 24965165
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intraoperative analgesia for day-care surgery: practice trends.
    Ahmed A; Abbasi S; Prakash C; Chandar S
    J Pak Med Assoc; 2007 Jun; 57(6):318-9. PubMed ID: 17629236
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of a paracetamol and tramadol fixed-dose combination on pain, asthenia, cognitive disorders and sleep quality in fibromyalgia.
    Ghini M; Carpenito G; Mascia MT
    Clin Exp Rheumatol; 2016; 34(2 Suppl 96):S152. PubMed ID: 27157401
    [No Abstract]   [Full Text] [Related]  

  • 51. Pregabalin antinociception and its interaction with tramadol in acute model of pain.
    Meymandi MS; Keyhanfar F
    Pharmacol Rep; 2012; 64(3):576-85. PubMed ID: 22814011
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intrathecal tramadol versus intrathecal fentanyl for visceral pain control during bupivacaine subarachnoid block for open appendicectomy.
    Afolayan JM; Olajumoke TO; Amadasun FE; Edomwonyi NP
    Niger J Clin Pract; 2014; 17(3):324-30. PubMed ID: 24714011
    [TBL] [Abstract][Full Text] [Related]  

  • 53. LPK-26, a novel kappa-opioid receptor agonist with potent antinociceptive effects and low dependence potential.
    Tao YM; Li QL; Zhang CF; Xu XJ; Chen J; Ju YW; Chi ZQ; Long YQ; Liu JG
    Eur J Pharmacol; 2008 Apr; 584(2-3):306-11. PubMed ID: 18353307
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of transdermal fentanyl and oral tramadol for lateral thoracotomy in dogs: cardiovascular and behavioural data.
    Read K; Khatun M; Murphy H
    Vet Anaesth Analg; 2019 Jan; 46(1):116-125. PubMed ID: 30527858
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Systematic evaluation of the nefopam-paracetamol combination in rodent models of antinociception.
    Girard P; Niedergang B; Pansart Y; Coppé MC; Verleye M
    Clin Exp Pharmacol Physiol; 2011 Mar; 38(3):170-8. PubMed ID: 21226753
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Epidemiological data, efficacy and safety of a paracetamol-tramadol fixed combination in the treatment of moderate-to-severe pain. SALZA: a post-marketing study in general practice.
    Mejjad O; Serrie A; Ganry H
    Curr Med Res Opin; 2011 May; 27(5):1013-20. PubMed ID: 21401445
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pharmacodynamic profile of tramadol in humans: influence of naltrexone pretreatment.
    Stoops WW; Lofwall MR; Nuzzo PA; Craig LB; Siegel AJ; Walsh SL
    Psychopharmacology (Berl); 2012 Oct; 223(4):427-38. PubMed ID: 22623016
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dextromethorphan and ketamine potentiate the antinociceptive effects of mu- but not delta- or kappa-opioid agonists in a mouse model of acute pain.
    Baker AK; Hoffmann VL; Meert TF
    Pharmacol Biochem Behav; 2002 Dec; 74(1):73-86. PubMed ID: 12376154
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of benfotiamine on mu-opioid receptor mediated antinociception in experimental diabetes.
    Nacitarhan C; Minareci E; Sadan G
    Exp Clin Endocrinol Diabetes; 2014 Mar; 122(3):173-8. PubMed ID: 24643695
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of the analgesic interactions between ketorolac and tramadol during arthritic nociception in rat.
    López-Muñoz FJ; Díaz-Reval MI; Terrón JA; Déciga-Campos M
    Eur J Pharmacol; 2004 Jan; 484(2-3):157-65. PubMed ID: 14744599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.