BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22302429)

  • 21. Protein Sequence Comparison and DNA-binding Protein Identification with Generalized PseAAC and Graphical Representation.
    Li C; Zhao J; Wang C; Yao Y
    Comb Chem High Throughput Screen; 2018; 21(2):100-110. PubMed ID: 29380690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Novel Protein Characterization Based on Pseudo Amino Acids Composition and Star-Like Graph Topological Indices.
    He PA; Tao H; Ma T; Dai Q; Yao Y
    Comb Chem High Throughput Screen; 2017; 20(4):328-337. PubMed ID: 28215145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Complex Prime Numerical Representation of Amino Acids for Protein Function Comparison.
    Chen D; Wang J; Yan M; Bao FS
    J Comput Biol; 2016 Aug; 23(8):669-77. PubMed ID: 27249328
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extension of molecular similarity analysis approach to classification of DNA sequences using DNA descriptors.
    Jayalakshmi R; Natarajan R; Vivekanandan M
    SAR QSAR Environ Res; 2011 Mar; 22(1-2):21-34. PubMed ID: 21391139
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving computational protein design by using structure-derived sequence profile.
    Dai L; Yang Y; Kim HR; Zhou Y
    Proteins; 2010 Aug; 78(10):2338-48. PubMed ID: 20544969
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of amino acid positions specific for functional groups in a protein family based on local sequence similarity.
    Karasev DA; Veselovsky AV; Oparina NY; Filimonov DA; Sobolev BN
    J Mol Recognit; 2016 Apr; 29(4):159-69. PubMed ID: 26549790
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel numerical characterization of protein sequences based on individual amino acid and its application.
    Zhang YP; Sheng YJ; Zheng W; He PA; Ruan JS
    Biomed Res Int; 2015; 2015():909567. PubMed ID: 25705698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new method for identification of protein (sub)families in a set of proteins based on hydropathy distribution in proteins.
    Pánek J; Eidhammer I; Aasland R
    Proteins; 2005 Mar; 58(4):923-34. PubMed ID: 15645428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein map: an alignment-free sequence comparison method based on various properties of amino acids.
    Yu C; Cheng SY; He RL; Yau SS
    Gene; 2011 Oct; 486(1-2):110-8. PubMed ID: 21803133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of protein dendrograms based on amino acid indices and Discrete Fourier Transform.
    Chrysostomou C; Seker H
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():816-9. PubMed ID: 25570084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PR2ALIGN: a stand-alone software program and a web-server for protein sequence alignment using weighted biochemical properties of amino acids.
    Kuznetsov IB; McDuffie M
    BMC Res Notes; 2015 May; 8():187. PubMed ID: 25947299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid assessment of correlated amino acids from pair-to-pair (P2P) substitution matrices.
    Eyal E; Pietrokovski S; Bahar I
    Bioinformatics; 2007 Jul; 23(14):1837-9. PubMed ID: 17496318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Periodic distributions of hydrophobic amino acids allows the definition of fundamental building blocks to align distantly related proteins.
    Baussand J; Deremble C; Carbone A
    Proteins; 2007 May; 67(3):695-708. PubMed ID: 17299747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping the hydropathy of amino acids based on their local solvation structure.
    Bonella S; Raimondo D; Milanetti E; Tramontano A; Ciccotti G
    J Phys Chem B; 2014 Jun; 118(24):6604-13. PubMed ID: 24845543
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An efficient method for measuring the similarity of protein sequences.
    El-Lakkani A; Lashin M
    SAR QSAR Environ Res; 2016 May; 27(5):363-70. PubMed ID: 27103219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Grouping of residues based on their contact interactions.
    Wang J; Wang W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041911. PubMed ID: 12005877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein sequence analysis by incorporating modified chaos game and physicochemical properties into Chou's general pseudo amino acid composition.
    Xu C; Sun D; Liu S; Zhang Y
    J Theor Biol; 2016 Oct; 406():105-15. PubMed ID: 27375218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Disease Probability Index (DPI, χ): A new alignment-free scoring method to evaluate the propensities of polypeptide sequences leading to disease onset.
    Ali A; Bagchi A
    Biosystems; 2018 Oct; 172():1-8. PubMed ID: 30099058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.