These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 22302438)
1. Reduced graphene oxide-mediated growth of uniform tin-core/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties. Luo B; Wang B; Liang M; Ning J; Li X; Zhi L Adv Mater; 2012 Mar; 24(11):1405-9. PubMed ID: 22302438 [TBL] [Abstract][Full Text] [Related]
2. Graphene-confined Sn nanosheets with enhanced lithium storage capability. Luo B; Wang B; Li X; Jia Y; Liang M; Zhi L Adv Mater; 2012 Jul; 24(26):3538-43. PubMed ID: 22678755 [TBL] [Abstract][Full Text] [Related]
3. Reduced graphite oxide/nano Sn: a superior composite anode material for rechargeable lithium-ion batteries. Nithya C; Gopukumar S ChemSusChem; 2013 May; 6(5):898-904. PubMed ID: 23512863 [TBL] [Abstract][Full Text] [Related]
4. Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries. Rui X; Zhu J; Sim D; Xu C; Zeng Y; Hng HH; Lim TM; Yan Q Nanoscale; 2011 Nov; 3(11):4752-8. PubMed ID: 21989744 [TBL] [Abstract][Full Text] [Related]
5. The ZnSn(OH)6 nanocube-graphene composite as an anode material for Li-ion batteries. Chen C; Zheng X; Yang J; Wei M Phys Chem Chem Phys; 2014 Oct; 16(37):20073-8. PubMed ID: 25130363 [TBL] [Abstract][Full Text] [Related]
6. One-pot synthesis of hematite@graphene core@shell nanostructures for superior lithium storage. Chen D; Quan H; Liang J; Guo L Nanoscale; 2013 Oct; 5(20):9684-9. PubMed ID: 23999932 [TBL] [Abstract][Full Text] [Related]
7. Graphene-wrapped MnO2 -graphene nanoribbons as anode materials for high-performance lithium ion batteries. Li L; Raji AR; Tour JM Adv Mater; 2013 Nov; 25(43):6298-302. PubMed ID: 23996876 [TBL] [Abstract][Full Text] [Related]
8. Graphene-Encapsulated Nanosheet-Assembled Zinc–Nickel–Cobalt Oxide Microspheres for Enhanced Lithium Storage. Zhang Q; Chen H; Han X; Cai J; Yang Y; Liu M; Zhang K ChemSusChem; 2016 Jan; 9(2):128. PubMed ID: 26777303 [No Abstract] [Full Text] [Related]
9. Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. Su Y; Li S; Wu D; Zhang F; Liang H; Gao P; Cheng C; Feng X ACS Nano; 2012 Sep; 6(9):8349-56. PubMed ID: 22931096 [TBL] [Abstract][Full Text] [Related]
10. Investigation of modified graphene for energy storage applications. Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171 [TBL] [Abstract][Full Text] [Related]
12. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594 [TBL] [Abstract][Full Text] [Related]
13. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Zhu J; Zhu T; Zhou X; Zhang Y; Lou XW; Chen X; Zhang H; Hng HH; Yan Q Nanoscale; 2011 Mar; 3(3):1084-9. PubMed ID: 21180729 [TBL] [Abstract][Full Text] [Related]
14. Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries. Jung HG; Jeong YS; Park JB; Sun YK; Scrosati B; Lee YJ ACS Nano; 2013 Apr; 7(4):3532-9. PubMed ID: 23540570 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of amorphous FeOOH/reduced graphene oxide composite by infrared irradiation and its superior lithium storage performance. Sun Y; Hu X; Luo W; Xu H; Hu C; Huang Y ACS Appl Mater Interfaces; 2013 Oct; 5(20):10145-50. PubMed ID: 24066738 [TBL] [Abstract][Full Text] [Related]
16. Preparation of nano-sized graphite-supported CuO and Cu-Sn as active materials in lithium ion batteries. Jung DW; Jeong JH; Kong BS; Lee JK; Oh ES J Nanosci Nanotechnol; 2012 Apr; 12(4):3317-21. PubMed ID: 22849115 [TBL] [Abstract][Full Text] [Related]
17. Assembly of tin oxide/graphene nanosheets into 3D hierarchical frameworks for high-performance lithium storage. Huang Y; Wu D; Han S; Li S; Xiao L; Zhang F; Feng X ChemSusChem; 2013 Aug; 6(8):1510-5. PubMed ID: 23784753 [TBL] [Abstract][Full Text] [Related]
18. Low-temperature aluminum reduction of graphene oxide, electrical properties, surface wettability, and energy storage applications. Wan D; Yang C; Lin T; Tang Y; Zhou M; Zhong Y; Huang F; Lin J ACS Nano; 2012 Oct; 6(10):9068-78. PubMed ID: 22984901 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and superior anode performances of TiO2-carbon-rGO composites in lithium-ion batteries. Ren Y; Zhang J; Liu Y; Li H; Wei H; Li B; Wang X ACS Appl Mater Interfaces; 2012 Sep; 4(9):4776-80. PubMed ID: 22900618 [TBL] [Abstract][Full Text] [Related]
20. Porous iron oxide ribbons grown on graphene for high-performance lithium storage. Yang S; Sun Y; Chen L; Hernandez Y; Feng X; Müllen K Sci Rep; 2012; 2():427. PubMed ID: 22645643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]