These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 22302511)
1. Elevated CO2 differentially affects photosynthetic induction response in two Populus species with different stomatal behavior. Tomimatsu H; Tang Y Oecologia; 2012 Aug; 169(4):869-78. PubMed ID: 22302511 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the photosynthetic induction response in a Populus species with stomata barely responding to light changes. Tang Y; Liang N Tree Physiol; 2000 Aug; 20(14):969-76. PubMed ID: 11303572 [TBL] [Abstract][Full Text] [Related]
3. Short-term effects of high CO2 accelerate photosynthetic induction in Populus koreana × trichocarpa with always-open stomata regardless of phenotypic changes in high CO2 growth conditions. Tomimatsu H; Sakata T; Fukayama H; Tang Y Tree Physiol; 2019 Mar; 39(3):474-483. PubMed ID: 30053250 [TBL] [Abstract][Full Text] [Related]
4. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. Singh SK; Badgujar G; Reddy VR; Fleisher DH; Bunce JA J Plant Physiol; 2013 Jun; 170(9):801-13. PubMed ID: 23384758 [TBL] [Abstract][Full Text] [Related]
5. Comparison of photosynthetic induction and transient limitations during the induction phase in young and mature leaves from three poplar clones. Urban O; Sprtová M; Kosvancová M; Tomásková I; Lichtenthaler HK; Marek MV Tree Physiol; 2008 Aug; 28(8):1189-97. PubMed ID: 18519250 [TBL] [Abstract][Full Text] [Related]
6. Responses to water stress in an ABA-unresponsive hybrid poplar (Populus koreana×trichocarpa cv. Peace) III. Consequences for photosynthetic carbon assimilation. Ridolfi M; Dreyer E New Phytol; 1997 Jan; 135(1):31-40. PubMed ID: 33863146 [TBL] [Abstract][Full Text] [Related]
7. Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2. Tricker PJ; Trewin H; Kull O; Clarkson GJ; Eensalu E; Tallis MJ; Colella A; Doncaster CP; Sabatti M; Taylor G Oecologia; 2005 May; 143(4):652-60. PubMed ID: 15909132 [TBL] [Abstract][Full Text] [Related]
8. Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs. McKown AD; Guy RD; Quamme L; Klápště J; La Mantia J; Constabel CP; El-Kassaby YA; Hamelin RC; Zifkin M; Azam MS Mol Ecol; 2014 Dec; 23(23):5771-90. PubMed ID: 25319679 [TBL] [Abstract][Full Text] [Related]
9. Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO(2) and elevated temperature. Zhao H; Li Y; Zhang X; Korpelainen H; Li C Tree Physiol; 2012 Nov; 32(11):1325-38. PubMed ID: 22918961 [TBL] [Abstract][Full Text] [Related]
10. Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions. Tomimatsu H; Tang Y J Plant Res; 2016 May; 129(3):365-77. PubMed ID: 27094437 [TBL] [Abstract][Full Text] [Related]
11. Nitrogen deposition limits photosynthetic response to elevated CO2 differentially in a dioecious species. Zhao H; Xu X; Zhang Y; Korpelainen H; Li C Oecologia; 2011 Jan; 165(1):41-54. PubMed ID: 20809407 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. Tanaka Y; Sugano SS; Shimada T; Hara-Nishimura I New Phytol; 2013 May; 198(3):757-764. PubMed ID: 23432385 [TBL] [Abstract][Full Text] [Related]
13. Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO2. Bobich EG; Barron-Gafford GA; Rascher KG; Murthy R Tree Physiol; 2010 Jul; 30(7):866-75. PubMed ID: 20462939 [TBL] [Abstract][Full Text] [Related]
15. Carbon gain and bud physiology in Populus tremuloides and Betula papyrifera grown under long-term exposure to elevated concentrations of CO2 and O3. Riikonen J; Kets K; Darbah J; Oksanen E; Sober A; Vapaavuori E; Kubiske ME; Nelson N; Karnosky DF Tree Physiol; 2008 Feb; 28(2):243-54. PubMed ID: 18055435 [TBL] [Abstract][Full Text] [Related]
16. The ozone sensitivity of five poplar clones is not related to stomatal conductance, constitutive antioxidant levels and morphology of leaves. Shang B; Feng Z; Gao F; Calatayud V Sci Total Environ; 2020 Jan; 699():134402. PubMed ID: 31683210 [TBL] [Abstract][Full Text] [Related]
17. Photosynthetic gas exchange response of poplars to steady-state and dynamic light environments. Roden JS; Pearcy RW Oecologia; 1993 Mar; 93(2):208-214. PubMed ID: 28313609 [TBL] [Abstract][Full Text] [Related]
18. Effects of ozone on stomatal responses to environmental parameters (blue light, red light, CO2 and vapour pressure deficit) in three Populus deltoides × Populus nigra genotypes. Dumont J; Spicher F; Montpied P; Dizengremel P; Jolivet Y; Le Thiec D Environ Pollut; 2013 Feb; 173():85-96. PubMed ID: 23202637 [TBL] [Abstract][Full Text] [Related]
19. Characteristics of transient photosynthesis in Quercus serrata seedlings grown under lightfleck and constant light regimes. Yanhong T; Hiroshi K; Mitsumasa S; Izumi W Oecologia; 1994 Dec; 100(4):463-469. PubMed ID: 28306935 [TBL] [Abstract][Full Text] [Related]
20. Transcriptomic comparison in the leaves of two aspen genotypes having similar carbon assimilation rates but different partitioning patterns under elevated [CO2]. Cseke LJ; Tsai CJ; Rogers A; Nelsen MP; White HL; Karnosky DF; Podila GK New Phytol; 2009 Jun; 182(4):891-911. PubMed ID: 19383098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]