These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22303012)

  • 21. Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines.
    Fatehi M; Linsdell P
    J Membr Biol; 2009 Apr; 228(3):151-64. PubMed ID: 19381710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular models of the open and closed states of the whole human CFTR protein.
    Mornon JP; Lehn P; Callebaut I
    Cell Mol Life Sci; 2009 Nov; 66(21):3469-86. PubMed ID: 19707853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant.
    Qian F; El Hiani Y; Linsdell P
    Pflugers Arch; 2011 Oct; 462(4):559-71. PubMed ID: 21796338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. State-dependent chemical reactivity of an engineered cysteine reveals conformational changes in the outer vestibule of the cystic fibrosis transmembrane conductance regulator.
    Zhang ZR; Song B; McCarty NA
    J Biol Chem; 2005 Dec; 280(51):41997-2003. PubMed ID: 16227620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular cysteines of the cystic fibrosis transmembrane conductance regulator (CFTR) modulate channel gating.
    Ketchum CJ; Yue H; Alessi KA; Devidas S; Guggino WB; Maloney PC
    Cell Physiol Biochem; 2002; 12(1):1-8. PubMed ID: 11914543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Involvement of the heterodimeric interface region of the nucleotide binding domain-2 (NBD2) in the CFTR quaternary structure and membrane stability.
    Micoud J; Chauvet S; Scheckenbach KE; Alfaidy N; Chanson M; Benharouga M
    Biochim Biophys Acta; 2015 Oct; 1853(10 Pt A):2420-31. PubMed ID: 26083625
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The cystic fibrosis transmembrane conductance regulator (CFTR): three-dimensional structure and localization of a channel gate.
    Rosenberg MF; O'Ryan LP; Hughes G; Zhao Z; Aleksandrov LA; Riordan JR; Ford RC
    J Biol Chem; 2011 Dec; 286(49):42647-42654. PubMed ID: 21931164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrophysiological, biochemical, and bioinformatic methods for studying CFTR channel gating and its regulation.
    Csanády L; Vergani P; Gulyás-Kovács A; Gadsby DC
    Methods Mol Biol; 2011; 741():443-69. PubMed ID: 21594801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localizing a gate in CFTR.
    Gao X; Hwang TC
    Proc Natl Acad Sci U S A; 2015 Feb; 112(8):2461-6. PubMed ID: 25675504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cysteine accessibility probes timing and extent of NBD separation along the dimer interface in gating CFTR channels.
    Chaves LA; Gadsby DC
    J Gen Physiol; 2015 Apr; 145(4):261-83. PubMed ID: 25825169
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating.
    Beck EJ; Yang Y; Yaemsiri S; Raghuram V
    J Biol Chem; 2008 Feb; 283(8):4957-66. PubMed ID: 18056267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).
    Zwick M; Esposito C; Hellstern M; Seelig A
    J Biol Chem; 2016 Jul; 291(28):14483-98. PubMed ID: 27226582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The H-loop in the second nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator is required for efficient chloride channel closing.
    Kloch M; Milewski M; Nurowska E; Dworakowska B; Cutting GR; Dołowy K
    Cell Physiol Biochem; 2010; 25(2-3):169-80. PubMed ID: 20110677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transmembrane helical interactions in the CFTR channel pore.
    Das J; Aleksandrov AA; Cui L; He L; Riordan JR; Dokholyan NV
    PLoS Comput Biol; 2017 Jun; 13(6):e1005594. PubMed ID: 28640808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differences between cystic fibrosis transmembrane conductance regulator and HisP in the interaction with the adenine ring of ATP.
    Berger AL; Welsh MJ
    J Biol Chem; 2000 Sep; 275(38):29407-12. PubMed ID: 10893239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of the degenerated interfacial ATP binding site improves the function of disease-related mutant cystic fibrosis transmembrane conductance regulator (CFTR) channels.
    Tsai MF; Jih KY; Shimizu H; Li M; Hwang TC
    J Biol Chem; 2010 Nov; 285(48):37663-71. PubMed ID: 20861014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformational Changes of CFTR upon Phosphorylation and ATP Binding.
    Zhang Z; Liu F; Chen J
    Cell; 2017 Jul; 170(3):483-491.e8. PubMed ID: 28735752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel.
    Tsai MF; Li M; Hwang TC
    J Gen Physiol; 2010 May; 135(5):399-414. PubMed ID: 20421370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.
    Csanády L; Chan KW; Nairn AC; Gadsby DC
    J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR.
    Jih KY; Li M; Hwang TC; Bompadre SG
    J Physiol; 2011 Jun; 589(Pt 11):2719-31. PubMed ID: 21486785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.