BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 22303021)

  • 21. NMR structure and dynamics of the C-terminal domain from human Rev1 and its complex with Rev1 interacting region of DNA polymerase η.
    Pozhidaeva A; Pustovalova Y; D'Souza S; Bezsonova I; Walker GC; Korzhnev DM
    Biochemistry; 2012 Jul; 51(27):5506-20. PubMed ID: 22691049
    [TBL] [Abstract][Full Text] [Related]  

  • 22. REV1 and polymerase ζ facilitate homologous recombination repair.
    Sharma S; Hicks JK; Chute CL; Brennan JR; Ahn JY; Glover TW; Canman CE
    Nucleic Acids Res; 2012 Jan; 40(2):682-91. PubMed ID: 21926160
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roles of mutagenic translesion synthesis in mammalian genome stability, health and disease.
    Jansen JG; Tsaalbi-Shtylik A; de Wind N
    DNA Repair (Amst); 2015 May; 29():56-64. PubMed ID: 25655219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Error-prone bypass patch by a low-fidelity variant of DNA polymerase zeta in human cells.
    Suzuki T; Sassa A; Grúz P; Gupta RC; Johnson F; Adachi N; Nohmi T
    DNA Repair (Amst); 2021 Apr; 100():103052. PubMed ID: 33607474
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NMR mapping of PCNA interaction with translesion synthesis DNA polymerase Rev1 mediated by Rev1-BRCT domain.
    Pustovalova Y; Maciejewski MW; Korzhnev DM
    J Mol Biol; 2013 Sep; 425(17):3091-105. PubMed ID: 23747975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis.
    Guo C; Fischhaber PL; Luk-Paszyc MJ; Masuda Y; Zhou J; Kamiya K; Kisker C; Friedberg EC
    EMBO J; 2003 Dec; 22(24):6621-30. PubMed ID: 14657033
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Small Molecule Targeting Mutagenic Translesion Synthesis Improves Chemotherapy.
    Wojtaszek JL; Chatterjee N; Najeeb J; Ramos A; Lee M; Bian K; Xue JY; Fenton BA; Park H; Li D; Hemann MT; Hong J; Walker GC; Zhou P
    Cell; 2019 Jun; 178(1):152-159.e11. PubMed ID: 31178121
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-step error-prone bypass of the (+)- and (-)-trans-anti-BPDE-N2-dG adducts by human DNA polymerases eta and kappa.
    Zhang Y; Wu X; Guo D; Rechkoblit O; Geacintov NE; Wang Z
    Mutat Res; 2002 Dec; 510(1-2):23-35. PubMed ID: 12459440
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Yeast Rev1 protein promotes complex formation of DNA polymerase zeta with Pol32 subunit of DNA polymerase delta.
    Acharya N; Johnson RE; Pagès V; Prakash L; Prakash S
    Proc Natl Acad Sci U S A; 2009 Jun; 106(24):9631-6. PubMed ID: 19487673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of hRev7, the accessory subunit of hPolζ, in translesion synthesis past DNA damage induced by benzo[a]pyrene diol epoxide (BPDE).
    Neal JA; Fletcher KL; McCormick JJ; Maher VM
    BMC Cell Biol; 2010 Dec; 11():97. PubMed ID: 21143968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complex formation of yeast Rev1 and Rev7 proteins: a novel role for the polymerase-associated domain.
    Acharya N; Haracska L; Johnson RE; Unk I; Prakash S; Prakash L
    Mol Cell Biol; 2005 Nov; 25(21):9734-40. PubMed ID: 16227619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural basis of recruitment of DNA polymerase ζ by interaction between REV1 and REV7 proteins.
    Kikuchi S; Hara K; Shimizu T; Sato M; Hashimoto H
    J Biol Chem; 2012 Sep; 287(40):33847-52. PubMed ID: 22859296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of Small Molecule Translesion Synthesis Inhibitors That Target the Rev1-CT/RIR Protein-Protein Interaction.
    Sail V; Rizzo AA; Chatterjee N; Dash RC; Ozen Z; Walker GC; Korzhnev DM; Hadden MK
    ACS Chem Biol; 2017 Jul; 12(7):1903-1912. PubMed ID: 28541665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The DNA polymerase activity of Saccharomyces cerevisiae Rev1 is biologically significant.
    Wiltrout ME; Walker GC
    Genetics; 2011 Jan; 187(1):21-35. PubMed ID: 20980236
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Benzo[a]pyrene diol epoxide-deoxyguanosine adducts are accurately bypassed by yeast DNA polymerase zeta in vitro.
    Simhadri S; Kramata P; Zajc B; Sayer JM; Jerina DM; Hinkle DC; Wei CS
    Mutat Res; 2002 Oct; 508(1-2):137-45. PubMed ID: 12379469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic control of predominantly error-free replication through an acrolein-derived minor-groove DNA adduct.
    Yoon JH; Hodge RP; Hackfeld LC; Park J; Roy Choudhury J; Prakash S; Prakash L
    J Biol Chem; 2018 Feb; 293(8):2949-2958. PubMed ID: 29330301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Different sets of translesion synthesis DNA polymerases protect from genome instability induced by distinct food-derived genotoxins.
    Temviriyanukul P; Meijers M; van Hees-Stuivenberg S; Boei JJ; Delbos F; Ohmori H; de Wind N; Jansen JG
    Toxicol Sci; 2012 May; 127(1):130-8. PubMed ID: 22331492
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequential assembly of translesion DNA polymerases at UV-induced DNA damage sites.
    Andersen PL; Xu F; Ziola B; McGregor WG; Xiao W
    Mol Biol Cell; 2011 Jul; 22(13):2373-83. PubMed ID: 21551069
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel role for the C terminus of Saccharomyces cerevisiae Rev1 in mediating protein-protein interactions.
    D'Souza S; Walker GC
    Mol Cell Biol; 2006 Nov; 26(21):8173-82. PubMed ID: 16923957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of the N terminus of mouse DNA polymerase κ on the bypass of a guanine-benzo[a]pyrenyl adduct.
    Liu Y; Ma X; Guo C
    J Biochem; 2016 Apr; 159(4):471-9. PubMed ID: 26634445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.