These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 22303156)
1. A Reduced Three Dimensional Model for SAW Sensors Using Finite Element Analysis. El Gowini MM; Moussa WA Sensors (Basel); 2009; 9(12):9945-64. PubMed ID: 22303156 [TBL] [Abstract][Full Text] [Related]
2. A Three-Dimensional Finite Element Analysis Model for SH-SAW Torque Sensors. Jiang C; Chen Y; Cho C Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31623365 [TBL] [Abstract][Full Text] [Related]
3. Finite Element Analysis for Surface Acoustic Wave Device Characteristic Properties and Sensitivity. Wang T; Green R; Guldiken R; Wang J; Mohapatra S; Mohapatra SS Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013700 [TBL] [Abstract][Full Text] [Related]
4. A finite element model of a MEMS-based surface acoustic wave hydrogen sensor. El Gowini MM; Moussa WA Sensors (Basel); 2010; 10(2):1232-50. PubMed ID: 22205865 [TBL] [Abstract][Full Text] [Related]
5. Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators. Chen W; Zhang L; Yang S; Jia W; Zhang S; Gu Y; Lou L; Wu G Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577761 [TBL] [Abstract][Full Text] [Related]
6. A Three-Dimensional Finite Element Analysis Model of SAW Torque Sensor with Multilayer Structure. Li Z; Meng X; Wang B; Zhang C Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408215 [TBL] [Abstract][Full Text] [Related]
7. Surface Acoustic Wave (SAW) Sensors for Hip Implant: A Numerical and Computational Feasibility Investigation Using Finite Element Methods. Hafizh M; Soliman MM; Qiblawey Y; Chowdhury MEH; Islam MT; Musharavati F; Mahmud S; Khandakar A; Nabil M; Nezhad EZ Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671914 [TBL] [Abstract][Full Text] [Related]
9. Mercury Sorption and Desorption on Gold: A Comparative Analysis of Surface Acoustic Wave and Quartz Crystal Microbalance-Based Sensors. Kabir KM; Sabri YM; Esmaielzadeh Kandjani A; Matthews GI; Field M; Jones LA; Nafady A; Ippolito SJ; Bhargava SK Langmuir; 2015 Aug; 31(30):8519-29. PubMed ID: 26169072 [TBL] [Abstract][Full Text] [Related]
10. Evaluation on mass sensitivity of SAW sensors for different piezoelectric materials using finite-element analysis. Abdollahi A; Jiang Z; Arabshahi SA IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2446-55. PubMed ID: 18276536 [TBL] [Abstract][Full Text] [Related]
11. Simulation of SAW Humidity Sensors Based on ( 11 2 ¯ 0 ) ZnO/R-Sapphire Structures. Lan XD; Zhang SY; Fan L; Wang Y Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827856 [TBL] [Abstract][Full Text] [Related]
12. Geometric Nonlinear Model for Prediction of Frequency-Temperature Behavior of SAW Devices for Nanosensor Applications. Chen Z; Zhang Q; Li C; Fu S; Qiu X; Wang X; Wu H Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751406 [TBL] [Abstract][Full Text] [Related]
13. Surface acoustic wave sensors of delay lines based on MEMS. Haofeng L; Rui J; Weilong L; Chen C; Xinyu L J Nanosci Nanotechnol; 2010 Nov; 10(11):7258-61. PubMed ID: 21137910 [TBL] [Abstract][Full Text] [Related]
14. Fast and Accurate Finite Transducer Analysis Method for Wireless Passive Impedance-Loaded SAW Sensors. Luo W; Yuan Y; Wang Y; Fu Q; Xia H; Li H Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453508 [TBL] [Abstract][Full Text] [Related]
15. Precise modeling of complex SAW structures using a perturbation method hybridized with a finite element analysis. Ballandras S; Bigler E IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):567-73. PubMed ID: 18244208 [TBL] [Abstract][Full Text] [Related]
16. Simulation of SAW Sensors with Various Distributed Mass Loadings Using Two-Dimensional Coupling-of-Modes Theory. You R; Liu J; Liu M; Chen Z; He S Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33352822 [TBL] [Abstract][Full Text] [Related]
17. Numerical analysis of wave generation and propagation in a focused surface acoustic wave device for potential microfluidics applications. Sankaranarayanan SK; Bhethanabotla VR IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):631-43. PubMed ID: 19411221 [TBL] [Abstract][Full Text] [Related]
18. Periodic Analysis of Surface Acoustic Wave Resonator with Dimensionally Reduced PDE Model Using COMSOL Code. Zhang Q; Chen Z; Chen Y; Dong J; Tang P; Fu S; Wu H; Ma J; Zhao X Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33525686 [TBL] [Abstract][Full Text] [Related]
19. Electrical and Optical Characterization of SAW Sensors Coated with Parylene C and Their Analysis Using the Coupling-of-Modes (COM) Theory. Smagin N; Vanotti M; Duquennoy M; Rousseau L; Alhousseini H; Blondeau-Patissier V; Ouaftouh M; Valbin L; Herth E Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433207 [TBL] [Abstract][Full Text] [Related]
20. FEM Modeling of the Temperature Influence on the Performance of SAW Sensors Operating at GigaHertz Frequency Range and at High Temperature Up to 500 °C. Asseko Ondo JC; Blampain EJJ; N'Tchayi Mbourou G; Mc Murtry S; Hage-Ali S; Elmazria O Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32726976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]