These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 22303245)

  • 41. An archived activation tagged population of Arabidopsis thaliana to facilitate forward genetics approaches.
    Robinson SJ; Tang LH; Mooney BA; McKay SJ; Clarke WE; Links MG; Karcz S; Regan S; Wu YY; Gruber MY; Cui D; Yu M; Parkin IA
    BMC Plant Biol; 2009 Jul; 9():101. PubMed ID: 19646253
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A chemical genetics method to uncover small molecules for dissecting the mechanism of ABA responses in Arabidopsis seed germination.
    Zhao Y
    Methods Mol Biol; 2012; 876():107-16. PubMed ID: 22576089
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High throughput selection of novel plant growth regulators: Assessing the translatability of small bioactive molecules from Arabidopsis to crops.
    Rodriguez-Furlán C; Miranda G; Reggiardo M; Hicks GR; Norambuena L
    Plant Sci; 2016 Apr; 245():50-60. PubMed ID: 26940491
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Screening for bioactive small molecules by in vivo monitoring of luciferase-based reporter gene expression in Arabidopsis thaliana.
    Meesters C; Kombrink E
    Methods Mol Biol; 2014; 1056():19-31. PubMed ID: 24306859
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Use of Drugs in the Study of Vacuole Morphology and Trafficking to the Vacuole in Arabidopsis thaliana.
    Tejos R; Osorio-Navarro C; Norambuena L
    Methods Mol Biol; 2018; 1789():143-154. PubMed ID: 29916077
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemical genomics reveals mechanistic hypotheses for uncharacterized bioactive molecules in bacteria.
    French S; Ellis MJ; Coutts BE; Brown ED
    Curr Opin Microbiol; 2017 Oct; 39():42-47. PubMed ID: 28957731
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selective chemical probes can untangle the complexity of the plant cell endomembrane system.
    Ma Q; Chang M; Drakakaki G; Russinova E
    Curr Opin Plant Biol; 2022 Aug; 68():102223. PubMed ID: 35567926
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Forward chemical screening of small RNA pathways.
    Lii Y; Jin H
    Methods Mol Biol; 2014; 1056():95-101. PubMed ID: 24306865
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Target identification strategies in chemical genetics.
    Tochtrop GP; King RW
    Comb Chem High Throughput Screen; 2004 Nov; 7(7):677-88. PubMed ID: 15578930
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis.
    Alonso JM; Ecker JR
    Nat Rev Genet; 2006 Jul; 7(7):524-36. PubMed ID: 16755288
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plant chemical biology: are we meeting the promise?
    Hicks GR; Raikhel NV
    Front Plant Sci; 2014; 5():455. PubMed ID: 25250041
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Clusters of bioactive compounds target dynamic endomembrane networks in vivo.
    Drakakaki G; Robert S; Szatmari AM; Brown MQ; Nagawa S; Van Damme D; Leonard M; Yang Z; Girke T; Schmid SL; Russinova E; Friml J; Raikhel NV; Hicks GR
    Proc Natl Acad Sci U S A; 2011 Oct; 108(43):17850-5. PubMed ID: 22006339
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification and characterization of unconventional membrane protein trafficking regulators in Arabidopsis: A genetic approach.
    Zhu Y; Ji C; Cao W; Shen J; Zhao Q; Jiang L
    J Plant Physiol; 2020 Sep; 252():153229. PubMed ID: 32750645
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Progress in using chemical biology as a tool to uncover novel regulators of plant endomembrane trafficking.
    Huang L; Li X; Zhang C
    Curr Opin Plant Biol; 2019 Dec; 52():106-113. PubMed ID: 31546132
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Auxin biology revealed by small molecules.
    Ma Q; Robert S
    Physiol Plant; 2014 May; 151(1):25-42. PubMed ID: 24252105
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Small molecules for dissecting endomembrane trafficking: a cross-systems view.
    Mishev K; Dejonghe W; Russinova E
    Chem Biol; 2013 Apr; 20(4):475-86. PubMed ID: 23601636
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plants and Small Molecules: An Up-and-Coming Synergy.
    Lepri A; Longo C; Messore A; Kazmi H; Madia VN; Di Santo R; Costi R; Vittorioso P
    Plants (Basel); 2023 Apr; 12(8):. PubMed ID: 37111951
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Forward & reverse chemical genetics using SPOS-based combinatorial chemistry.
    Thorpe DS
    Comb Chem High Throughput Screen; 2003 Nov; 6(7):623-47. PubMed ID: 14683491
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Use of comparative genomics approaches to characterize interspecies differences in response to environmental chemicals: challenges, opportunities, and research needs.
    Burgess-Herbert SL; Euling SY
    Toxicol Appl Pharmacol; 2013 Sep; 271(3):372-85. PubMed ID: 22142766
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.