These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 22304077)
1. O'Connell's process as a vicious Brownian motion. Katori M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061144. PubMed ID: 22304077 [TBL] [Abstract][Full Text] [Related]
2. Maximum distributions of bridges of noncolliding Brownian paths. Kobayashi N; Izumi M; Katori M Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051102. PubMed ID: 19113090 [TBL] [Abstract][Full Text] [Related]
3. Vicious walks with a wall, noncolliding meanders, and chiral and Bogoliubov-de Gennes random matrices. Katori M; Tanemura H; Nagao T; Komatsuda N Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021112. PubMed ID: 14524958 [TBL] [Abstract][Full Text] [Related]
4. Moments of vicious walkers and Möbius graph expansions. Katori M; Komatsuda N Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051110. PubMed ID: 12786137 [TBL] [Abstract][Full Text] [Related]
5. Scaling limit of vicious walks and two-matrix model. Katori M; Tanemura H Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 1):011105. PubMed ID: 12241339 [TBL] [Abstract][Full Text] [Related]
6. Distribution of the time at which N vicious walkers reach their maximal height. Rambeau J; Schehr G Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061146. PubMed ID: 21797341 [TBL] [Abstract][Full Text] [Related]
7. Brownian motion of arbitrarily shaped particles in two dimensions. Chakrabarty A; Konya A; Wang F; Selinger JV; Sun K; Wei QH Langmuir; 2014 Nov; 30(46):13844-53. PubMed ID: 25357180 [TBL] [Abstract][Full Text] [Related]
8. Fractal structure of a three-dimensional brownian motion on an attractive plane. Saberi AA Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021113. PubMed ID: 21928955 [TBL] [Abstract][Full Text] [Related]
9. Anomalous diffusion as modeled by a nonstationary extension of Brownian motion. Cushman JH; O'Malley D; Park M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):032101. PubMed ID: 19391995 [TBL] [Abstract][Full Text] [Related]
10. Ratcheting of Brownian swimmers in periodically corrugated channels: a reduced Fokker-Planck approach. Yariv E; Schnitzer O Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032115. PubMed ID: 25314403 [TBL] [Abstract][Full Text] [Related]
11. On the range of lattice models in high dimensions. Holmes M; Perkins E Probab Theory Relat Fields; 2020; 176(3):941-1009. PubMed ID: 32355386 [TBL] [Abstract][Full Text] [Related]
12. Brownian motion of an ellipsoid. Han Y; Alsayed AM; Nobili M; Zhang J; Lubensky TC; Yodh AG Science; 2006 Oct; 314(5799):626-30. PubMed ID: 17068256 [TBL] [Abstract][Full Text] [Related]
13. MARKOV PROCESSES CONDITIONED ON THEIR LOCATION AT LARGE EXPONENTIAL TIMES. Evans SN; Hening A Stoch Process Their Appl; 2019 May; 129(5):1622-1658. PubMed ID: 31680715 [TBL] [Abstract][Full Text] [Related]
14. Exponential stability for neutral stochastic functional partial differential equations driven by Brownian motion and fractional Brownian motion. Zhang X; Ruan D J Inequal Appl; 2018; 2018(1):201. PubMed ID: 30839575 [TBL] [Abstract][Full Text] [Related]
15. Active Brownian particles escaping a channel in single file. Locatelli E; Baldovin F; Orlandini E; Pierno M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022109. PubMed ID: 25768460 [TBL] [Abstract][Full Text] [Related]
16. Fractional and scaled Brownian motion on the sphere: The effects of long-time correlations on navigation strategies. Valdés Gómez A; Sevilla FJ Phys Rev E; 2023 Nov; 108(5-1):054117. PubMed ID: 38115432 [TBL] [Abstract][Full Text] [Related]
17. Wigner function approach to the quantum Brownian motion of a particle in a potential. Coffey WT; Kalmykov YP; Titov SV; Mulligan BP Phys Chem Chem Phys; 2007 Jul; 9(26):3361-82. PubMed ID: 17664961 [TBL] [Abstract][Full Text] [Related]
18. Phase transition, scaling of moments, and order-parameter distributions in Brownian particles and branching processes with finite-size effects. Corral Á; Garcia-Millan R; Moloney NR; Font-Clos F Phys Rev E; 2018 Jun; 97(6-1):062156. PubMed ID: 30011443 [TBL] [Abstract][Full Text] [Related]
19. Overdamped limit and inverse-friction expansion for Brownian motion in an inhomogeneous medium. Durang X; Kwon C; Park H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062118. PubMed ID: 26172672 [TBL] [Abstract][Full Text] [Related]