These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22304147)

  • 41. Systematic design of phononic band-gap materials and structures by topology optimization.
    Sigmund O; Jensen JS
    Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):1001-19. PubMed ID: 12804226
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phononic crystals based on LiNbO3 realized using domain inversion by electron-beam irradiation.
    Assouar BM; Vincent B; Moubchir H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):273-8. PubMed ID: 18334333
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Maximizing wave attenuation in viscoelastic phononic crystals by topology optimization.
    Chen Y; Guo D; Li YF; Li G; Huang X
    Ultrasonics; 2019 Apr; 94():419-429. PubMed ID: 30001853
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tunable Lamb wave band gaps in two-dimensional magnetoelastic phononic crystal slabs by an applied external magnetostatic field.
    Zhou C; Sai Y; Chen J
    Ultrasonics; 2016 Sep; 71():69-74. PubMed ID: 27281285
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Anisotropic lattice expansion of three-dimensional colloidal crystals and its impact on hypersonic phonon band gaps.
    Wu S; Zhu G; Zhang JS; Banerjee D; Bass JD; Ling C; Yano K
    Phys Chem Chem Phys; 2014 May; 16(19):8921-6. PubMed ID: 24691556
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Complete band gaps in a polyvinyl chloride (PVC) phononic plate with cross-like holes: numerical design and experimental verification.
    Miniaci M; Marzani A; Testoni N; De Marchi L
    Ultrasonics; 2015 Feb; 56():251-9. PubMed ID: 25129653
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Propagation of elastic waves through two-dimensional lattices of cylindrical empty or water-filled inclusions in an aluminum matrix.
    Robert S; Conoir JM; Franklin H
    Ultrasonics; 2006 Dec; 45(1-4):178-87. PubMed ID: 17067650
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Surface resonant-states-enhanced acoustic wave tunneling in two-dimensional phononic crystals.
    Ke M; He Z; Peng S; Liu Z; Shi J; Wen W; Sheng P
    Phys Rev Lett; 2007 Jul; 99(4):044301. PubMed ID: 17678368
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Realization of Complex 3D Phononic Crystals with Wide Complete Acoustic Band Gaps.
    Lucklum F; Vellekoop M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 May; 63(5):796-767. PubMed ID: 27008667
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Band structure calculation of 2D fluid/solid and solid/fluid phononic crystal using a modified smoothed finite element method with fluid-solid interaction.
    Yao L; Xu J; Jiang G; Wu F
    Ultrasonics; 2021 Feb; 110():106267. PubMed ID: 33035736
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three-dimensional phononic band gap calculations using the FDTD method and a PC cluster system.
    Hsieh PF; Wu TT; Sun JH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan; 53(1):148-58. PubMed ID: 16471441
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Band transition and topological interface modes in 1D elastic phononic crystals.
    Yin J; Ruzzene M; Wen J; Yu D; Cai L; Yue L
    Sci Rep; 2018 May; 8(1):6806. PubMed ID: 29717212
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Elastic wave propagation in hierarchical lattices with convex and concave hexagons stacked vertexes.
    Zhu Z; Deng Z; Tong S; Ding B; Du J
    J Acoust Soc Am; 2019 Sep; 146(3):1519. PubMed ID: 31590544
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Imaging ripples on phononic crystals reveals acoustic band structure and Bloch harmonics.
    Profunser DM; Wright OB; Matsuda O
    Phys Rev Lett; 2006 Aug; 97(5):055502. PubMed ID: 17026111
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Band-gap engineering in two-dimensional semiconductor-dielectric photonic crystals.
    Kushwaha MS; Martinez G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):027601. PubMed ID: 15783461
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tuning of band structures in porous phononic crystals by grading design of cells.
    Wang K; Liu Y; Yang QS
    Ultrasonics; 2015 Aug; 61():25-32. PubMed ID: 25890636
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nonlinear Bloch waves and balance between hardening and softening dispersion.
    Hussein MI; Khajehtourian R
    Proc Math Phys Eng Sci; 2018 Sep; 474(2217):20180173. PubMed ID: 30333703
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phononic plate waves.
    Wu TT; Hsu JC; Sun JH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2146-61. PubMed ID: 21989878
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lamb waves in phononic crystal slabs: truncated plane parallels to the axis of periodicity.
    Chen J; Xia Y; Han X; Zhang H
    Ultrasonics; 2012 Sep; 52(7):920-4. PubMed ID: 22472014
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with functionally graded interlayers.
    Guo X; Wei P; Lan M; Li L
    Ultrasonics; 2016 Aug; 70():158-71. PubMed ID: 27179141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.