These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 22304175)
1. Coexistence of exponentially many chaotic spin-glass attractors. Peleg Y; Zigzag M; Kinzel W; Kanter I Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066204. PubMed ID: 22304175 [TBL] [Abstract][Full Text] [Related]
2. Coexistence of Cyclic Sequential Pattern Recognition and Associative Memory in Neural Networks by Attractor Mechanisms. Huo J; Yu J; Wang M; Yi Z; Leng J; Liao Y IEEE Trans Neural Netw Learn Syst; 2024 Mar; PP():. PubMed ID: 38442060 [TBL] [Abstract][Full Text] [Related]
3. Random symmetry breaking and freezing in chaotic networks. Peleg Y; Kinzel W; Kanter I Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036212. PubMed ID: 23031002 [TBL] [Abstract][Full Text] [Related]
5. Cortical free-association dynamics: distinct phases of a latching network. Russo E; Treves A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051920. PubMed ID: 23004800 [TBL] [Abstract][Full Text] [Related]
6. Phase synchronization in time-delay systems. Senthilkumar DV; Lakshmanan M; Kurths J Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):035205. PubMed ID: 17025694 [TBL] [Abstract][Full Text] [Related]
7. Threshold control of chaotic neural network. He G; Shrimali MD; Aihara K Neural Netw; 2008; 21(2-3):114-21. PubMed ID: 18178377 [TBL] [Abstract][Full Text] [Related]
8. Synchronization of networks of chaotic units with time-delayed couplings. Kinzel W; Englert A; Reents G; Zigzag M; Kanter I Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056207. PubMed ID: 19518536 [TBL] [Abstract][Full Text] [Related]
9. Stability of attractors formed by inertial particles in open chaotic flows. Do Y; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036203. PubMed ID: 15524608 [TBL] [Abstract][Full Text] [Related]
10. Window of multistability and its control in a simple 3D Hopfield neural network: application to biomedical image encryption. Njitacke ZT; Isaac SD; Nestor T; Kengne J Neural Comput Appl; 2021; 33(12):6733-6752. PubMed ID: 33169051 [TBL] [Abstract][Full Text] [Related]
11. A Hidden Chaotic System with Multiple Attractors. Zhang X; Tian Z; Li J; Wu X; Cui Z Entropy (Basel); 2021 Oct; 23(10):. PubMed ID: 34682065 [TBL] [Abstract][Full Text] [Related]
12. Numerical explorations of R. M. Goodwin's business cycle model. Jakimowicz A Nonlinear Dynamics Psychol Life Sci; 2010 Jan; 14(1):69-83. PubMed ID: 20021778 [TBL] [Abstract][Full Text] [Related]
13. Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronization and cryptography. Antonik P; Gulina M; Pauwels J; Massar S Phys Rev E; 2018 Jul; 98(1-1):012215. PubMed ID: 30110744 [TBL] [Abstract][Full Text] [Related]
14. n-scroll chaotic attractors from a first-order time-delay differential equation. Yalçin ME; Ozoguz S Chaos; 2007 Sep; 17(3):033112. PubMed ID: 17902994 [TBL] [Abstract][Full Text] [Related]
15. Itinerant memory dynamics and global bifurcations in chaotic neural networks. Kitajima H; Yoshinaga T; Aihara K; Kawakami H Chaos; 2003 Sep; 13(3):1122-32. PubMed ID: 12946205 [TBL] [Abstract][Full Text] [Related]
16. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry]. Pezard L; Nandrino JL Encephale; 2001; 27(3):260-8. PubMed ID: 11488256 [TBL] [Abstract][Full Text] [Related]
17. Unipolar terminal-attractor-based neural associative memory with adaptive threshold and perfect convergence. Wu CH; Liu HK Appl Opt; 1994 Apr; 33(11):2210-7. PubMed ID: 20885568 [TBL] [Abstract][Full Text] [Related]
18. Controlling chaos in a chaotic neural network. He G; Cao Z; Zhu P; Ogura H Neural Netw; 2003 Oct; 16(8):1195-200. PubMed ID: 13678622 [TBL] [Abstract][Full Text] [Related]
19. Construction of an associative memory using unstable periodic orbits of a chaotic attractor. Wagner C; Stucki JW J Theor Biol; 2002 Apr; 215(3):375-84. PubMed ID: 12054844 [TBL] [Abstract][Full Text] [Related]
20. Bistable gradient networks. I. Attractors and pattern retrieval at low loading in the thermodynamic limit. McGraw PN; Menzinger M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016118. PubMed ID: 12636575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]