These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 22304182)

  • 1. Chaos in the Hamiltonian mean-field model.
    Ginelli F; Takeuchi KA; Chaté H; Politi A; Torcini A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066211. PubMed ID: 22304182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensive and subextensive chaos in globally coupled dynamical systems.
    Takeuchi KA; Chaté H; Ginelli F; Politi A; Torcini A
    Phys Rev Lett; 2011 Sep; 107(12):124101. PubMed ID: 22026770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin and scaling of chaos in weakly coupled phase oscillators.
    Carlu M; Ginelli F; Politi A
    Phys Rev E; 2018 Jan; 97(1-1):012203. PubMed ID: 29448446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal scaling of Lyapunov-exponent fluctuations in space-time chaos.
    Pazó D; López JM; Politi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062909. PubMed ID: 23848750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasistationarity in a model of long-range interacting particles moving on a sphere.
    Gupta S; Mukamel D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052137. PubMed ID: 24329244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global geometric indicator of chaos and Lyapunov exponents in Hamiltonian systems.
    Ramasubramanian K; Sriram MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):046207. PubMed ID: 11690125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing weak chaos using time series of Lyapunov exponents.
    da Silva RM; Manchein C; Beims MW; Altmann EG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062907. PubMed ID: 26172772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling laws for the largest Lyapunov exponent in long-range systems: A random matrix approach.
    Anteneodo C; Vallejos RO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016210. PubMed ID: 11800771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperlabyrinth chaos: from chaotic walks to spatiotemporal chaos.
    Chlouverakis KE; Sprott JC
    Chaos; 2007 Jun; 17(2):023110. PubMed ID: 17614664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics and physical interpretation of quasistationary states in systems with long-range interactions.
    Rocha Filho TM; Amato MA; Santana AE; Figueiredo A; Steiner JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032116. PubMed ID: 24730799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic Lyapunov modes and strong stochasticity threshold in Fermi-Pasta-Ulam models.
    Yang HL; Radons G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066201. PubMed ID: 16906940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local predictability and nonhyperbolicity through finite Lyapunov exponent distributions in two-degrees-of-freedom Hamiltonian systems.
    Vallejo JC; Viana RL; Sanjuán MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066204. PubMed ID: 19256922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic localization of Lyapunov vectors in Hamiltonian lattices.
    Pikovsky A; Politi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036207. PubMed ID: 11308741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic Lyapunov modes and strong stochasticity threshold in the dynamic XY model: an alternative scenario.
    Yang HL; Radons G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016203. PubMed ID: 18351922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weak and strong chaos in Fermi-Pasta-Ulam models and beyond.
    Pettini M; Casetti L; Cerruti-Sola M; Franzosi R; Cohen EG
    Chaos; 2005 Mar; 15(1):15106. PubMed ID: 15836283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Riemannian geometry of Hamiltonian chaos: hints for a general theory.
    Cerruti-Sola M; Ciraolo G; Franzosi R; Pettini M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046205. PubMed ID: 18999506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-consistent inhomogeneous steady states in Hamiltonian mean-field dynamics.
    de Buyl P; Mukamel D; Ruffo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061151. PubMed ID: 22304084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excess free energy and Casimir forces in systems with long-range interactions of van der Waals type: general considerations and exact spherical-model results.
    Dantchev D; Diehl HW; Grüneberg D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016131. PubMed ID: 16486240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lyapunov exponents from unstable periodic orbits.
    Franzosi R; Poggi P; Cerruti-Sola M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036218. PubMed ID: 15903557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaling and universality in the counterion-condensation transition at charged cylinders.
    Naji A; Netz RR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056105. PubMed ID: 16802996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.