These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22304464)

  • 1. Climatic, biological, and land cover controls on the exchange of gas-phase semivolatile chemical pollutants between forest canopies and the atmosphere.
    Nizzetto L; Perlinger JA
    Environ Sci Technol; 2012 Mar; 46(5):2699-707. PubMed ID: 22304464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the influence of forests on the overall fate of semivolatile organic compounds using a multimedia fate model.
    Wania F; Mclachlan MS
    Environ Sci Technol; 2001 Feb; 35(3):582-90. PubMed ID: 11351732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of climate and land use change on spatially resolved volatilization of persistent organic pollutants (POPs) from background soils.
    Komprda J; Komprdová K; Sáňka M; Možný M; Nizzetto L
    Environ Sci Technol; 2013 Jul; 47(13):7052-9. PubMed ID: 23506564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling long-term uptake and re-volatilization of semi-volatile organic compounds (SVOCs) across the soil-atmosphere interface.
    Bao Z; Haberer C; Maier U; Beckingham B; Amos RT; Grathwohl P
    Sci Total Environ; 2015 Dec; 538():789-801. PubMed ID: 26340582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracing the fate of PCBs in forest ecosystems.
    Nizzetto L; Stroppiana D; Brivio PA; Boschetti M; Di Guardo A
    J Environ Monit; 2007 Jun; 9(6):542-9. PubMed ID: 17554425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Canopy interaction with precipitation and sulphur deposition in two boreal forests of Quebec, Canada.
    Marty C; Houle D; Duchesne L; Gagnon C
    Environ Pollut; 2012 Mar; 162():354-60. PubMed ID: 22243885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.
    Uddling J; Teclaw RM; Pregitzer KS; Ellsworth DS
    Tree Physiol; 2009 Nov; 29(11):1367-80. PubMed ID: 19773339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest.
    Barford CC; Wofsy SC; Goulden ML; Munger JW; Pyle EH; Urbanski SP; Hutyra L; Saleska SR; Fitzjarrald D; Moore K
    Science; 2001 Nov; 294(5547):1688-91. PubMed ID: 11721047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical evaluation of a new passive exchange-meter for assessing multimedia fate of persistent organic pollutants at the air-soil interface.
    Liu X; Ming LL; Nizzetto L; Borgå K; Larssen T; Zheng Q; Li J; Zhang G
    Environ Pollut; 2013 Oct; 181():144-50. PubMed ID: 23856089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the perturbations of persistent organic pollutants induced by climate change.
    Ma J; Cao Z
    Environ Sci Technol; 2010 Nov; 44(22):8567-73. PubMed ID: 20923220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO₂ concentration.
    Domec JC; Schäfer K; Oren R; Kim HS; McCarthy HR
    Tree Physiol; 2010 Aug; 30(8):1001-15. PubMed ID: 20566583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertical and seasonal variations in temperature responses of leaf respiration in a Chamaecyparis obtusa canopy.
    Araki MG; Gyokusen K; Kajimoto T
    Tree Physiol; 2017 Oct; 37(10):1269-1284. PubMed ID: 28338803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atmospheric chemistry: a forest air of chirality.
    Stephanou EG
    Nature; 2007 Apr; 446(7139):991. PubMed ID: 17460652
    [No Abstract]   [Full Text] [Related]  

  • 15. Future carbon balance of China's forests under climate change and increasing CO2.
    Ju WM; Chen JM; Harvey D; Wang S
    J Environ Manage; 2007 Nov; 85(3):538-62. PubMed ID: 17187919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaseous mercury fluxes from the forest floor of the Adirondacks.
    Choi HD; Holsen TM
    Environ Pollut; 2009 Feb; 157(2):592-600. PubMed ID: 18922608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of forests with secondary air pollutants: some challenges for future research.
    Cape JN
    Environ Pollut; 2008 Oct; 155(3):391-7. PubMed ID: 18342419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of climate change on stomatal ozone flux to a mountain Norway spruce forest.
    Zapletal M; Pretel J; Chroust P; Cudlín P; Edwards-Jonášová M; Urban O; Pokorný R; Czerný R; Hůnová I
    Environ Pollut; 2012 Oct; 169():267-73. PubMed ID: 22682306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate.
    Tang X; Wilson SR; Solomon KR; Shao M; Madronich S
    Photochem Photobiol Sci; 2011 Feb; 10(2):280-91. PubMed ID: 21253665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Numerical simulation of interaction between forest ecosystem and atmosphere boundary layer].
    Liu S; Deng Y; Hu F; Liang F; Liu H; Wang J
    Ying Yong Sheng Tai Xue Bao; 2004 Nov; 15(11):2005-12. PubMed ID: 15707303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.