These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22304475)

  • 21. Synthesis of methyl-1-(tert-butoxycarbonylamino)-2-vinylcyclopropanecarboxylate via a Hofmann rearrangement utilizing trichloroisocyanuric acid as an oxidant.
    Crane ZD; Nichols PJ; Sammakia T; Stengel PJ
    J Org Chem; 2011 Jan; 76(1):277-80. PubMed ID: 21133382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hypervalent iodine(III)-mediated oxidation of aldoximes to N-acetoxy or N-hydroxy amides.
    Ghosh H; Patel BK
    Org Biomol Chem; 2010 Jan; 8(2):384-90. PubMed ID: 20066274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis, characterization, and reaction of ethynyl(phenyl)-lambda3-iodane complex with [18]crown-6.
    Ochiai M; Miyamoto K; Suefuji T; Sakamoto S; Yamaguchi K; Shiro M
    Angew Chem Int Ed Engl; 2003 May; 42(19):2191-4. PubMed ID: 12761758
    [No Abstract]   [Full Text] [Related]  

  • 24. Synthesis of methyl carbamates from primary aliphatic amines and dimethyl carbonate in supercritical CO2: effects of pressure and cosolvents and chemoselectivity.
    Selva M; Tundo P; Perosa A; Dall'Acqua F
    J Org Chem; 2005 Apr; 70(7):2771-7. PubMed ID: 15787571
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Release of protein N-glycans by effectors of a Hofmann carboxamide rearrangement.
    Kasim M; Schulz M; Griebel A; Malhotra A; Müller B; von Horsten HH
    Front Mol Biosci; 2022; 9():983679. PubMed ID: 36172046
    [No Abstract]   [Full Text] [Related]  

  • 26. Rearrangements Induced by Hypervalent Iodine.
    Maertens G; Canesi S
    Top Curr Chem; 2016; 373():223-41. PubMed ID: 26287122
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile synthesis of Nalpha-protected-L-alpha,gamma-diaminobutyric acids mediated by polymer-supported hypervalent iodine reagent in water.
    Yamada K; Urakawa H; Oku H; Katakai R
    J Pept Res; 2004 Aug; 64(2):43-50. PubMed ID: 15251030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hypervalent phenyl-λ3-iodane-mediated para-selective aromatic fluorination of 3-phenylpropyl ethers.
    Saito M; Miyamoto K; Ochiai M
    Chem Commun (Camb); 2011 Mar; 47(12):3410-2. PubMed ID: 21340054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theoretical study on the hypervalent λ3-bromane strategy for Baeyer-Villiger oxidation of benzaldehyde and acetaldehyde: rearrangement mechanism.
    Fu H; Xie S; Fu A; Lin X; Zhao H; Ye T
    Org Biomol Chem; 2012 Aug; 10(31):6333-40. PubMed ID: 22735260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hypervalent N-sulfonylimino-lambda(3)-bromane: active nitrenoid species at ambient temperature under metal-free conditions.
    Ochiai M; Miyamoto K; Hayashi S; Nakanishi W
    Chem Commun (Camb); 2010 Jan; 46(4):511-21. PubMed ID: 20062852
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of the lithiation-borylation reaction to the preparation of enantioenriched allylic boron reagents and subsequent in situ conversion into 1,2,4-trisubstituted homoallylic alcohols with complete control over all elements of stereochemistry.
    Althaus M; Mahmood A; Suárez JR; Thomas SP; Aggarwal VK
    J Am Chem Soc; 2010 Mar; 132(11):4025-8. PubMed ID: 20192266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Practical Synthesis of Ethynyl(phenyl)-λ
    Hashishin T; Osawa T; Miyamoto K; Uchiyama M
    Front Chem; 2020; 8():12. PubMed ID: 32117863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Several convenient methods for the synthesis of 2-amido substituted furans.
    Padwa A; Crawford KR; Rashatasakhon P; Rose M
    J Org Chem; 2003 Apr; 68(7):2609-17. PubMed ID: 12662029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Difluoro-lambda3-bromane-induced oxidative carbon-carbon bond-forming reactions: ethanol as an electrophilic partner and alkynes as nucleophiles.
    Ochiai M; Yoshimura A; Mori T; Nishi Y; Hirobe M
    J Am Chem Soc; 2008 Mar; 130(12):3742-3. PubMed ID: 18303895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parallel synthesis of ureas and carbamates from amines and CO2 under mild conditions.
    Peterson SL; Stucka SM; Dinsmore CJ
    Org Lett; 2010 Mar; 12(6):1340-3. PubMed ID: 20175533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct synthesis of esters and amides from unprotected hydroxyaromatic and -aliphatic carboxylic acids.
    Katritzky AR; Singh SK; Cai C; Bobrov S
    J Org Chem; 2006 Apr; 71(9):3364-74. PubMed ID: 16626115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zinc-mediated C-C bond sigmatropic rearrangement: a new and efficient methodology for the synthesis of beta-diketones.
    Li L; Cai P; Xu D; Guo Q; Xue S
    J Org Chem; 2007 Oct; 72(21):8131-4. PubMed ID: 17887703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Breaking down the reactivity of λ(3)-iodanes: the impact of structure and bonding on competing reaction mechanisms.
    Pinto de Magalhães H; Lüthi HP; Togni A
    J Org Chem; 2014 Sep; 79(17):8374-82. PubMed ID: 25111290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 1,3-Diol synthesis via controlled, radical-mediated C-H functionalization.
    Chen K; Richter JM; Baran PS
    J Am Chem Soc; 2008 Jun; 130(23):7247-9. PubMed ID: 18481847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of Polycyclic Cyclohexadienone through Alkoxy-Oxylactonization and Dearomatization of 3'-Hydroxy-[1,1'-biphenyl]-2-carboxylic Acids Promoted by Hypervalent Iodine.
    Deng Q; Xia W; Hussain MI; Zhang X; Hu W; Xiong Y
    J Org Chem; 2020 Mar; 85(5):3125-3133. PubMed ID: 31942790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.