BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22304784)

  • 21. Footwear and running cardio-respiratory responses.
    Rubin DA; Butler RJ; Beckman B; Hackney AC
    Int J Sports Med; 2009 May; 30(5):379-82. PubMed ID: 19199221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of longitudinal biomechanical adaptation to shoe degradation between the dominant and non-dominant legs during running.
    Kong PW; Candelaria NG; Smith D
    Hum Mov Sci; 2011 Jun; 30(3):606-13. PubMed ID: 21333368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Statistical discrimination of footwear: a method for the comparison of accidentals on shoe outsoles inspired by facial recognition techniques.
    Petraco ND; Gambino C; Kubic TA; Olivio D; Petraco N
    J Forensic Sci; 2010 Jan; 55(1):34-41. PubMed ID: 19895540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional data analysis of running kinematics in chronic Achilles tendon injury.
    Donoghue OA; Harrison AJ; Coffey N; Hayes K
    Med Sci Sports Exerc; 2008 Jul; 40(7):1323-35. PubMed ID: 18580414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The movement of the heel within a running shoe.
    Stacoff A; Reinschmidt C; Stüssi E
    Med Sci Sports Exerc; 1992 Jun; 24(6):695-701. PubMed ID: 1602942
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased shoe sole hardness results in compensatory changes in the utilized coefficient of friction during walking.
    Tsai YJ; Powers CM
    Gait Posture; 2009 Oct; 30(3):303-6. PubMed ID: 19553123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning of a basic coordination pattern constructs straight-ahead and curved walking in humans.
    Courtine G; Schieppati M
    J Neurophysiol; 2004 Apr; 91(4):1524-35. PubMed ID: 14668296
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of three different levels of footwear stability on pain outcomes in women runners: a randomised control trial.
    Ryan MB; Valiant GA; McDonald K; Taunton JE
    Br J Sports Med; 2011 Jul; 45(9):715-21. PubMed ID: 20584759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics.
    Watson JT; Ritzmann RE; Zill SN; Pollack AJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Feb; 188(1):39-53. PubMed ID: 11935229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Common functional principal components analysis: a new approach to analyzing human movement data.
    Coffey N; Harrison AJ; Donoghue OA; Hayes K
    Hum Mov Sci; 2011 Dec; 30(6):1144-66. PubMed ID: 21543128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of different footwear on force of landing during running.
    Cheung RT; Ng GY
    Phys Ther; 2008 May; 88(5):620-8. PubMed ID: 18276937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards a footwear design tool: influence of shoe midsole properties and ground stiffness on the impact force during running.
    Ly QH; Alaoui A; Erlicher S; Baly L
    J Biomech; 2010 Jan; 43(2):310-7. PubMed ID: 19931083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of shoe type on plantar pressure: a gender comparison.
    Queen RM; Abbey AN; Wiegerinck JI; Yoder JC; Nunley JA
    Gait Posture; 2010 Jan; 31(1):18-22. PubMed ID: 19765995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomechanics of the double rocker sole shoe: gait kinematics and kinetics.
    Long JT; Klein JP; Sirota NM; Wertsch JJ; Janisse D; Harris GF
    J Biomech; 2007; 40(13):2882-90. PubMed ID: 17467718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Midsole material-related force control during heel-toe running.
    Kersting UG; Brüggemann GP
    Res Sports Med; 2006; 14(1):1-17. PubMed ID: 16700401
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid gait termination: effects of age, walking surfaces and footwear characteristics.
    Menant JC; Steele JR; Menz HB; Munro BJ; Lord SR
    Gait Posture; 2009 Jul; 30(1):65-70. PubMed ID: 19359178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identifying head-trunk and lower limb contributions to gaze stabilization during locomotion.
    Mulavara AP; Bloomberg JJ
    J Vestib Res; 2002-2003; 12(5-6):255-69. PubMed ID: 14501102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Barefoot-shod running differences: shoe or mass effect?
    Divert C; Mornieux G; Freychat P; Baly L; Mayer F; Belli A
    Int J Sports Med; 2008 Jun; 29(6):512-8. PubMed ID: 18027308
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pattern classification of kinematic and kinetic running data to distinguish gender, shod/barefoot and injury groups with feature ranking.
    Eskofier BM; Kraus M; Worobets JT; Stefanyshyn DJ; Nigg BM
    Comput Methods Biomech Biomed Engin; 2012; 15(5):467-74. PubMed ID: 21294006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Support vector machines for detecting age-related changes in running kinematics.
    Fukuchi RK; Eskofier BM; Duarte M; Ferber R
    J Biomech; 2011 Feb; 44(3):540-2. PubMed ID: 20980005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.