These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22304820)

  • 1. Comparative analysis of smokeless gunpowders by Fourier transform infrared and Raman spectroscopy.
    López-López M; Ferrando JL; García-Ruiz C
    Anal Chim Acta; 2012 Mar; 717():92-9. PubMed ID: 22304820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New protocol for the isolation of nitrocellulose from gunpowders: utility in their identification.
    López-López M; de la Ossa MA; Galindo JS; Ferrando JL; Vega A; Torre M; García-Ruiz C
    Talanta; 2010 Jun; 81(4-5):1742-9. PubMed ID: 20441967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diphenylamine and derivatives as predictors of gunpowder age by means of HPLC and statistical models.
    López-López M; Bravo JC; García-Ruiz C; Torre M
    Talanta; 2013 Jan; 103():214-20. PubMed ID: 23200380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing the additive composition of smokeless gunpowder and its handgun-fired residues.
    Reardon MR; MacCrehan WA; Rowe WF
    J Forensic Sci; 2000 Nov; 45(6):1232-8. PubMed ID: 11110174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced Raman spectroscopy for the analysis of smokeless gunpowders and macroscopic gunshot residues.
    López-López M; Merk V; García-Ruiz C; Kneipp J
    Anal Bioanal Chem; 2016 Jul; 408(18):4965-73. PubMed ID: 27137517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the nitrogen content of nitrocellulose from smokeless gunpowders and collodions by alkaline hydrolysis and ion chromatography.
    López-López M; Alegre JM; García-Ruiz C; Torre M
    Anal Chim Acta; 2011 Jan; 685(2):196-203. PubMed ID: 21168569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined Fourier transform infrared and Raman spectroscopic approach for identification of multidrug resistance phenotype in cancer cell lines.
    Krishna CM; Kegelaer G; Adt I; Rubin S; Kartha VB; Manfait M; Sockalingum GD
    Biopolymers; 2006 Aug; 82(5):462-70. PubMed ID: 16493658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. analysis of phthalate ester content in poly(vinyl chloride) plastics by means of fourier transform Raman spectroscopy.
    Nørbygaard T; Berg RW
    Appl Spectrosc; 2004 Apr; 58(4):410-3. PubMed ID: 15104810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of gunpowder samples using time-of-flight secondary ion mass spectrometry (TOF-SIMS).
    Mahoney CM; Gillen G; Fahey AJ
    Forensic Sci Int; 2006 Apr; 158(1):39-51. PubMed ID: 16005590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A market study of green spray paints by Fourier transform infrared (FTIR) and Raman spectroscopy.
    Buzzini P; Massonnet G
    Sci Justice; 2004; 44(3):123-31. PubMed ID: 15270450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman spectroscopic signature of semen and its potential application to forensic body fluid identification.
    Virkler K; Lednev IK
    Forensic Sci Int; 2009 Dec; 193(1-3):56-62. PubMed ID: 19850425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid determination of vitamin C by NIR, MIR and FT-Raman techniques.
    Yang H; Irudayaraj J
    J Pharm Pharmacol; 2002 Sep; 54(9):1247-55. PubMed ID: 12356279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forensic analysis of architectural finishes using fourier transform infrared and Raman spectroscopy, part II: white paint.
    Bell SE; Fido LA; Speers SJ; Armstrong WJ; Spratt S
    Appl Spectrosc; 2005 Nov; 59(11):1340-6. PubMed ID: 16316511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the headspace composition of smokeless powders using GC-MS, GC-μECD and ion mobility spectrometry.
    Joshi M; Rigsby K; Almirall JR
    Forensic Sci Int; 2011 May; 208(1-3):29-36. PubMed ID: 21109373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-infrared Fourier transform Raman spectroscopic study of cornea and sclera.
    Mizuno A; Tsuji M; Fujii K; Kawauchi K; Ozaki Y
    Jpn J Ophthalmol; 1994; 38(1):44-8. PubMed ID: 7933696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of pollen by vibrational spectroscopy.
    Zimmermann B
    Appl Spectrosc; 2010 Dec; 64(12):1364-73. PubMed ID: 21144154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New advances in the application of FTIR microscopy and spectroscopy for the characterization of artistic materials.
    Prati S; Joseph E; Sciutto G; Mazzeo R
    Acc Chem Res; 2010 Jun; 43(6):792-801. PubMed ID: 20476733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fourier transform infrared/Raman differentiation and characterization of cis- and trans-2,5-dimethoxy-4,beta-dimethyl-beta-nitrostyrenes: precursors to the street drug STP.
    By A; Neville GA; Shurvell HF
    J Forensic Sci; 1992 Mar; 37(2):503-12. PubMed ID: 1500895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictions of secondary structure using statistical analyses of electronic and vibrational circular dichroism and Fourier transform infrared spectra of proteins in H2O.
    Baumruk V; Pancoska P; Keiderling TA
    J Mol Biol; 1996 Jun; 259(4):774-91. PubMed ID: 8683582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Rapid and non-destructive identification of calligraphies by Fourier transform infrared spectroscopy and Fourier transform Raman spectroscopy].
    Na N; Ouyang QM; Qiao YQ; Ouyang J; Wang YH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Nov; 24(11):1327-30. PubMed ID: 15762467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.