These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 22304844)
1. Shape optimization of stress concentration-free lattice for self-expandable Nitinol stent-grafts. Masoumi Khalil Abad E; Pasini D; Cecere R J Biomech; 2012 Apr; 45(6):1028-35. PubMed ID: 22304844 [TBL] [Abstract][Full Text] [Related]
2. Computational mechanics of Nitinol stent grafts. Kleinstreuer C; Li Z; Basciano CA; Seelecke S; Farber MA J Biomech; 2008 Aug; 41(11):2370-8. PubMed ID: 18644312 [TBL] [Abstract][Full Text] [Related]
3. Design optimization of stent and its dilatation balloon using kriging surrogate model. Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895 [TBL] [Abstract][Full Text] [Related]
4. Deformation mechanisms of prototype composite braided stent-grafts in bending fatigue for peripheral artery application. Xue W; Gao J; Lin J; Wang F; Guan G; Wang L J Mech Behav Biomed Mater; 2018 Feb; 78():74-81. PubMed ID: 29136578 [TBL] [Abstract][Full Text] [Related]
5. In silico fatigue optimization of TAVR stent designs with physiological motion in a beating heart model. Baylous K; Helbock R; Kovarovic B; Anam S; Slepian M; Bluestein D Comput Methods Programs Biomed; 2024 Jan; 243():107886. PubMed ID: 37925854 [TBL] [Abstract][Full Text] [Related]
7. The consequences of the mechanical environment of peripheral arteries for nitinol stenting. Early M; Kelly DJ Med Biol Eng Comput; 2011 Nov; 49(11):1279-88. PubMed ID: 21833628 [TBL] [Abstract][Full Text] [Related]
9. A sutureless aortic stent-graft based on a nitinol scaffold bonded to a compliant nanocomposite polymer is durable for 10 years in a simulated in vitro model. Desai M; Bakhshi R; Zhou X; Odlyha M; You Z; Seifalian AM; Hamilton G J Endovasc Ther; 2012 Jun; 19(3):415-27. PubMed ID: 22788896 [TBL] [Abstract][Full Text] [Related]
10. A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing. Robertson SW; Launey M; Shelley O; Ong I; Vien L; Senthilnathan K; Saffari P; Schlegel S; Pelton AR J Mech Behav Biomed Mater; 2015 Nov; 51():119-31. PubMed ID: 26241890 [TBL] [Abstract][Full Text] [Related]
11. Thin-film nitinol (NiTi): a feasibility study for a novel aortic stent graft material. Rigberg D; Tulloch A; Chun Y; Mohanchandra KP; Carman G; Lawrence P J Vasc Surg; 2009 Aug; 50(2):375-80. PubMed ID: 19631872 [TBL] [Abstract][Full Text] [Related]
12. Comparison of second-generation stents for application in the superficial femoral artery: an in vitro evaluation focusing on stent design. Müller-Hülsbeck S; Schäfer PJ; Charalambous N; Yagi H; Heller M; Jahnke T J Endovasc Ther; 2010 Dec; 17(6):767-76. PubMed ID: 21142489 [TBL] [Abstract][Full Text] [Related]
13. Fatigue and durability of Nitinol stents. Pelton AR; Schroeder V; Mitchell MR; Gong XY; Barney M; Robertson SW J Mech Behav Biomed Mater; 2008 Apr; 1(2):153-64. PubMed ID: 19627780 [TBL] [Abstract][Full Text] [Related]
14. Finite element analysis for fatigue behaviour of a self-expanding Nitinol peripheral stent under physiological biomechanical conditions. Lei L; Qi X; Li S; Yang Y; Hu Y; Li B; Zhao S; Zhang Y Comput Biol Med; 2019 Jan; 104():205-214. PubMed ID: 30529572 [TBL] [Abstract][Full Text] [Related]
15. Fatigue behaviour of Nitinol peripheral stents: the role of plaque shape studied with computational structural analyses. Dordoni E; Meoli A; Wu W; Dubini G; Migliavacca F; Pennati G; Petrini L Med Eng Phys; 2014 Jul; 36(7):842-9. PubMed ID: 24721457 [TBL] [Abstract][Full Text] [Related]
16. Comparison of a microporous thermoplastic polyurethane-covered stent with a self-expanding bare nitinol stent in a porcine iliac artery model. Radeleff B; Grenacher L; Christoph P; Sommer CM; Stampfl U; Ramsauer S; Henn T; Kurz P; Lopez-Benitez R; Berger I; Richter GM J Vasc Interv Radiol; 2009 Jul; 20(7):927-35. PubMed ID: 19497761 [TBL] [Abstract][Full Text] [Related]
17. [Numerical modeling of shape memory alloy vascular stent's self-expandable progress and "optimized grid" of stent]. Xu Q; Liu Y; Wang B; He J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1101-6. PubMed ID: 19024455 [TBL] [Abstract][Full Text] [Related]
18. Finite element analysis of NiTi self-expandable heart valve stent. Salemizadeh Parizi F; Mehrabi R; Karamooz-Ravari MR Proc Inst Mech Eng H; 2019 Oct; 233(10):1042-1050. PubMed ID: 31354047 [TBL] [Abstract][Full Text] [Related]
20. In vitro evaluation of the radial and axial force of self-expanding esophageal stents. Hirdes MM; Vleggaar FP; de Beule M; Siersema PD Endoscopy; 2013 Dec; 45(12):997-1005. PubMed ID: 24288220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]