These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 22305068)
1. Photosynthetic performance of Jatropha curcas fruits. Ranjan S; Singh R; Soni DK; Pathre UV; Shirke PA Plant Physiol Biochem; 2012 Mar; 52():66-76. PubMed ID: 22305068 [TBL] [Abstract][Full Text] [Related]
2. Growth, reproductive phenology and yield responses of a potential biofuel plant, Jatropha curcas grown under projected 2050 levels of elevated CO2. Kumar S; Chaitanya BS; Ghatty S; Reddy AR Physiol Plant; 2014 Nov; 152(3):501-19. PubMed ID: 24655305 [TBL] [Abstract][Full Text] [Related]
3. Effects of leaf, shoot and fruit development on photosynthesis of lychee trees (Litchi chinensis). Hieke S; Menzel CM; Lüdders P Tree Physiol; 2002 Sep; 22(13):955-61. PubMed ID: 12204852 [TBL] [Abstract][Full Text] [Related]
4. In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species. Slot M; Winter K Plant Cell Environ; 2017 Dec; 40(12):3055-3068. PubMed ID: 28926102 [TBL] [Abstract][Full Text] [Related]
5. Leaf-level gas-exchange uniformity and photosynthetic capacity among loblolly pine (Pinus taeda L.) genotypes of contrasting inherent genetic variation. Aspinwall MJ; King JS; McKeand SE; Domec JC Tree Physiol; 2011 Jan; 31(1):78-91. PubMed ID: 21389004 [TBL] [Abstract][Full Text] [Related]
6. Spatial distribution of leaf nitrogen and photosynthetic capacity within the foliage of individual trees: disentangling the effects of local light quality, leaf irradiance, and transpiration. Frak E; Le Roux X; Millard P; Adam B; Dreyer E; Escuit C; Sinoquet H; Vandame M; Varlet-Grancher C J Exp Bot; 2002 Nov; 53(378):2207-16. PubMed ID: 12379788 [TBL] [Abstract][Full Text] [Related]
7. Temperature and CO Greer DH Plant Physiol Biochem; 2017 Feb; 111():295-303. PubMed ID: 27987474 [TBL] [Abstract][Full Text] [Related]
8. Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas. Lima Neto MC; Lobo AK; Martins MO; Fontenele AV; Silveira JA J Plant Physiol; 2014 Jan; 171(1):23-30. PubMed ID: 24094996 [TBL] [Abstract][Full Text] [Related]
9. Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis. Chastain DR; Snider JL; Collins GD; Perry CD; Whitaker J; Byrd SA J Plant Physiol; 2014 Nov; 171(17):1576-85. PubMed ID: 25151126 [TBL] [Abstract][Full Text] [Related]
10. The effects of phenotypic plasticity on photosynthetic performance in winter rye, winter wheat and Brassica napus. Dahal K; Kane K; Gadapati W; Webb E; Savitch LV; Singh J; Sharma P; Sarhan F; Longstaffe FJ; Grodzinski B; Hüner NP Physiol Plant; 2012 Feb; 144(2):169-88. PubMed ID: 21883254 [TBL] [Abstract][Full Text] [Related]
11. How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures? Leibar U; Aizpurua A; Unamunzaga O; Pascual I; Morales F Photosynth Res; 2015 May; 124(2):199-215. PubMed ID: 25786733 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous measurement of stomatal conductance, non-photochemical quenching, and photochemical yield of photosystem II in intact leaves by thermal and chlorophyll fluorescence imaging. Omasa K; Takayama K Plant Cell Physiol; 2003 Dec; 44(12):1290-300. PubMed ID: 14701924 [TBL] [Abstract][Full Text] [Related]
13. Short- and long-term physiological responses of grapevine leaves to UV-B radiation. Martínez-Lüscher J; Morales F; Delrot S; Sánchez-Díaz M; Gomés E; Aguirreolea J; Pascual I Plant Sci; 2013 Dec; 213():114-22. PubMed ID: 24157214 [TBL] [Abstract][Full Text] [Related]
14. Increased stomatal conductance induces rapid changes to photosynthetic rate in response to naturally fluctuating light conditions in rice. Yamori W; Kusumi K; Iba K; Terashima I Plant Cell Environ; 2020 May; 43(5):1230-1240. PubMed ID: 31990076 [TBL] [Abstract][Full Text] [Related]
15. Growth maximization trumps maintenance of leaf conductance in the tallest angiosperm. Koch GW; Sillett SC; Antoine ME; Williams CB Oecologia; 2015 Feb; 177(2):321-31. PubMed ID: 25542214 [TBL] [Abstract][Full Text] [Related]
16. Seasonal change in response of stomatal conductance to vapor pressure deficit and three phytohormones in three tree species. Li J; Zhang GZ; Li X; Wang Y; Wang FZ; Li XM Plant Signal Behav; 2019; 14(12):1682341. PubMed ID: 31668123 [TBL] [Abstract][Full Text] [Related]
17. A biochemical model of photosynthesis for mango leaves: evidence for the effect of fruit on photosynthetic capacity of nearby leaves. Urban L; Le Roux X; Sinoquet H; Jaffuel S; Jannoyer M Tree Physiol; 2003 Apr; 23(5):289-300. PubMed ID: 12615544 [TBL] [Abstract][Full Text] [Related]
18. Light inhibition of leaf respiration in field-grown Eucalyptus saligna in whole-tree chambers under elevated atmospheric CO2 and summer drought. Crous KY; Zaragoza-Castells J; Ellsworth DS; Duursma RA; Löw M; Tissue DT; Atkin OK Plant Cell Environ; 2012 May; 35(5):966-81. PubMed ID: 22091780 [TBL] [Abstract][Full Text] [Related]
19. Response of blueberry photosynthetic physiology to light intensity during different stages of fruit development. Long J; Tan T; Zhu Y; An X; Zhang X; Wang D PLoS One; 2024; 19(9):e0310252. PubMed ID: 39321160 [TBL] [Abstract][Full Text] [Related]
20. Responses of the photosynthetic apparatus to winter conditions in broadleaved evergreen trees growing in warm temperate regions of Japan. Tanaka C; Nakano T; Yamazaki JY; Maruta E Plant Physiol Biochem; 2015 Jan; 86():147-154. PubMed ID: 25500451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]