These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22305106)

  • 21. Energy absorption of seated occupants exposed to horizontal vibration and role of back support condition.
    Rakheja S; Mandapuram S; Dong RG
    Ind Health; 2008 Dec; 46(6):550-66. PubMed ID: 19088407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of horizontal whole-body vibration and standing posture on activity interference.
    Baker WD; Mansfield NJ
    Ergonomics; 2010 Mar; 53(3):365-74. PubMed ID: 20191411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relative contribution of translational and rotational vibration to discomfort.
    Marjanen Y; Mansfield NJ
    Ind Health; 2010; 48(5):519-29. PubMed ID: 20953069
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of vibration magnitude, vibration spectrum and muscle tension on apparent mass and cross axis transfer functions during whole-body vibration exposure.
    Mansfield NJ; Holmlund P; Lundström R; Lenzuni P; Nataletti P
    J Biomech; 2006; 39(16):3062-70. PubMed ID: 16375910
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The vibration of inclined backrests: perception and discomfort of vibration applied parallel to the back in the z-axis of the body.
    Basri B; Griffin MJ
    Ergonomics; 2011 Dec; 54(12):1214-27. PubMed ID: 22103729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Perception of fore-and-aft whole-body vibration intensity measured by two methods.
    Forta NG; Schust M
    Ergonomics; 2015; 58(11):1800-12. PubMed ID: 25984917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predictive discomfort in single- and combined-axis whole-body vibration considering different seated postures.
    DeShaw J; Rahmatalla S
    Hum Factors; 2014 Aug; 56(5):850-63. PubMed ID: 25141593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of the thickness of polyurethane foams at the seat pan and the backrest on fore-and-aft in-line and vertical cross-axis seat transmissibility when sitting with various contact conditions of backrest during fore-and-aft vibration.
    Zhang X; Zhang Q; Li Y; Liu C; Qiu Y
    Appl Ergon; 2021 May; 93():103354. PubMed ID: 33516943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discomfort of seated persons exposed to low frequency lateral and roll oscillation: Effect of backrest height.
    Beard GF; Griffin MJ
    Appl Ergon; 2016 May; 54():51-61. PubMed ID: 26851464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of backrest angles on discomfort caused by fore-and-aft back vibration.
    Kato K; Hanai T
    Ind Health; 1998 Apr; 36(2):107-11. PubMed ID: 9583306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of sound level and vibration magnitude on the relative discomfort of noise and vibration.
    Huang Y; Griffin MJ
    J Acoust Soc Am; 2012 Jun; 131(6):4558-69. PubMed ID: 22712930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subjective discomfort analysis of human body in semi-supine posture caused by vertical sinusoidal vibration.
    Govindan R; Saran VH; Harsha SP
    Ergonomics; 2021 Jun; 64(6):744-754. PubMed ID: 33320790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Apparent mass and seat-to-head transmissibility responses of seated occupants under single and dual axis horizontal vibration.
    Mandapuram S; Rakheja S; Boileau PÉ; Maeda S; Shibata N
    Ind Health; 2010; 48(5):698-714. PubMed ID: 20953086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Whole-body vibration exposure in unfavourable seated postures: apparent mass and seat-to-head transmissibility measurements in the fore-and-aft, lateral, and vertical directions.
    Amari M; Perrin N
    Ergonomics; 2023 Jan; 66(1):136-151. PubMed ID: 35543592
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discomfort of seated persons exposed to low frequency lateral and roll oscillation: effect of seat cushion.
    Beard GF; Griffin MJ
    Appl Ergon; 2014 Nov; 45(6):1547-57. PubMed ID: 24947003
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The application of SEAT values for predicting how compliant seats with backrests influence vibration discomfort.
    Basri B; Griffin MJ
    Appl Ergon; 2014 Nov; 45(6):1461-74. PubMed ID: 24793821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodynamic response of the seated human body to single-axis and dual-axis vibration: effect of backrest and non-linearity.
    Qiu Y; Griffin MJ
    Ind Health; 2012; 50(1):37-51. PubMed ID: 22146145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of support conditions on vertical whole-body vibration of the seated human body.
    M-Pranesh A; Rakheja S; Demont R
    Ind Health; 2010; 48(5):682-97. PubMed ID: 20953085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A quasi-static discomfort measure in whole-body vibration.
    Rahmatalla S; Smith R; Meusch J; Xia T; Marler T; Contratto M
    Ind Health; 2010; 48(5):645-53. PubMed ID: 20953081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transmission of roll and pitch seat vibration to the head.
    Paddan GS; Griffin MJ
    Ergonomics; 1994 Sep; 37(9):1513-31. PubMed ID: 7957029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.