These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22305120)

  • 21. Degradation of bisphenol A by white rot fungi, Stereum hirsutum and Heterobasidium insulare, and reduction of its estrogenic activity.
    Lee SM; Koo BW; Choi JW; Choi DH; An BS; Jeung EB; Choi IG
    Biol Pharm Bull; 2005 Feb; 28(2):201-7. PubMed ID: 15684469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolism of bisphenol A by hyper lignin-degrading fungus Phanerochaete sordida YK-624 under non-ligninolytic condition.
    Wang J; Yamada Y; Notake A; Todoroki Y; Tokumoto T; Dong J; Thomas P; Hirai H; Kawagishi H
    Chemosphere; 2014 Aug; 109():128-33. PubMed ID: 24582362
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Edible fungus degrade bisphenol A with no harmful effect on its fatty acid composition.
    Zhang C; Li M; Chen X; Li M
    Ecotoxicol Environ Saf; 2015 Aug; 118():126-132. PubMed ID: 25933259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Removal of EDCs(BPA) by ultrafiltration and impact factors].
    Wang L; Dong BZ; Gao NY
    Huan Jing Ke Xue; 2007 Feb; 28(2):329-34. PubMed ID: 17489192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ability of white-rot fungi to degrade the endocrine-disrupting compound nonylphenol.
    Soares A; Jonasson K; Terrazas E; Guieysse B; Mattiasson B
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):719-25. PubMed ID: 15735968
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal capacity and pathways of phenolic endocrine disruptors in an estuarine wetland of natural reed bed.
    Yang L; Li Z; Zou L; Gao H
    Chemosphere; 2011 Apr; 83(3):233-9. PubMed ID: 21269659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Influencing factors and kinetics of oxidation of bisphenol A in water with sodium hypochlorite].
    Wang XJ; Gao NY; Sun XF; Xu B
    Huan Jing Ke Xue; 2007 Nov; 28(11):2544-9. PubMed ID: 18290480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced Phytoremediation of Bisphenol A in Polluted Lake Water by Seedlings of
    Zhao C; Zhang G; Jiang J
    Int J Environ Res Public Health; 2021 Jan; 18(2):. PubMed ID: 33477860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biotransformation of the antibiotic agent flumequine by ligninolytic fungi and residual antibacterial activity of the transformation mixtures.
    Cvančarová M; Moeder M; Filipová A; Reemtsma T; Cajthaml T
    Environ Sci Technol; 2013 Dec; 47(24):14128-36. PubMed ID: 24261869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bisphenol A in the environment and recent advances in biodegradation by fungi.
    Torres-García JL; Ahuactzin-Pérez M; Fernández FJ; Cortés-Espinosa DV
    Chemosphere; 2022 Sep; 303(Pt 1):134940. PubMed ID: 35588877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Degradability of chlorine-free bleachery effluent lignins by two fungi: effects on lignin subunit type and on polymer molecular weight.
    Bergbauer M; Eggert C
    Can J Microbiol; 1994 Mar; 40(3):192-7. PubMed ID: 8012907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aerobic biodegradation of bisphenol A in river sediment and associated bacterial community change.
    Yang Y; Wang Z; Xie S
    Sci Total Environ; 2014 Feb; 470-471():1184-8. PubMed ID: 24246941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: effects of reaction conditions and sludge matrix.
    Zhang A; Li Y
    Sci Total Environ; 2014 Sep; 493():307-23. PubMed ID: 24951888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biodegradation of endocrine-disrupting phthalates by Pleurotus ostreatus.
    Hwang SS; Choi HT; Song HG
    J Microbiol Biotechnol; 2008 Apr; 18(4):767-72. PubMed ID: 18467874
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fungal biodegradation of the N-nitrosodimethylamine precursors venlafaxine and O-desmethylvenlafaxine in water.
    Llorca M; Castellet-Rovira F; Farré MJ; Jaén-Gil A; Martínez-Alonso M; Rodríguez-Mozaz S; Sarrà M; Barceló D
    Environ Pollut; 2019 Mar; 246():346-356. PubMed ID: 30577003
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phycoremediation of coastal waters contaminated with bisphenol A by green tidal algae Ulva prolifera.
    Zhang C; Lu J; Wu J; Luo Y
    Sci Total Environ; 2019 Apr; 661():55-62. PubMed ID: 30665132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradation of endocrine-disrupting bisphenol A by white rot fungus Irpex lacteus.
    Shin EH; Choi HT; Song HG
    J Microbiol Biotechnol; 2007 Jul; 17(7):1147-51. PubMed ID: 18051326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, produced by the white-rot basidiomycete, Pleurotus ostreatus.
    Hirano T; Honda Y; Watanabe T; Kuwahara M
    Biosci Biotechnol Biochem; 2000 Sep; 64(9):1958-62. PubMed ID: 11055402
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial composition of biofilm treating wastewater rich in bisphenol A.
    Cydzik-Kwiatkowska A; Zielińska M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Mar; 53(4):385-392. PubMed ID: 29173057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of phenolic endocrine disruptors by Portulaca oleracea.
    Imai S; Shiraishi A; Gamo K; Watanabe I; Okuhata H; Miyasaka H; Ikeda K; Bamba T; Hirata K
    J Biosci Bioeng; 2007 May; 103(5):420-6. PubMed ID: 17609156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.