BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 22305755)

  • 1. Driving oscillatory activity in the human cortex enhances motor performance.
    Joundi RA; Jenkinson N; Brittain JS; Aziz TZ; Brown P
    Curr Biol; 2012 Mar; 22(5):403-7. PubMed ID: 22305755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting cortical activity at Beta-band frequencies slows movement in humans.
    Pogosyan A; Gaynor LD; Eusebio A; Brown P
    Curr Biol; 2009 Oct; 19(19):1637-41. PubMed ID: 19800236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oscillations in sensorimotor cortex in movement disorders: an electrocorticography study.
    Crowell AL; Ryapolova-Webb ES; Ostrem JL; Galifianakis NB; Shimamoto S; Lim DA; Starr PA
    Brain; 2012 Feb; 135(Pt 2):615-30. PubMed ID: 22252995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of repetitive transcranial magnetic stimulation on movement-related cortical activity in humans.
    Rossi S; Pasqualetti P; Rossini PM; Feige B; Ulivelli M; Glocker FX; Battistini N; Lucking CH; Kristeva-Feige R
    Cereb Cortex; 2000 Aug; 10(8):802-8. PubMed ID: 10920051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band.
    Crone NE; Miglioretti DL; Gordon B; Lesser RP
    Brain; 1998 Dec; 121 ( Pt 12)():2301-15. PubMed ID: 9874481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements.
    Gerloff C; Richard J; Hadley J; Schulman AE; Honda M; Hallett M
    Brain; 1998 Aug; 121 ( Pt 8)():1513-31. PubMed ID: 9712013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined EEG and TMS study.
    Fuggetta G; Fiaschi A; Manganotti P
    Neuroimage; 2005 Oct; 27(4):896-908. PubMed ID: 16054397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterned low-frequency deep brain stimulation induces motor deficits and modulates cortex-basal ganglia neural activity in healthy rats.
    Oza CS; Brocker DT; Behrend CE; Grill WM
    J Neurophysiol; 2018 Nov; 120(5):2410-2422. PubMed ID: 30089019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Movement related potentials and oscillatory activities in the human internal globus pallidus during voluntary movements.
    Tsang EW; Hamani C; Moro E; Mazzella F; Lozano AM; Hodaie M; Yeh IJ; Chen R
    J Neurol Neurosurg Psychiatry; 2012 Jan; 83(1):91-7. PubMed ID: 21700729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements.
    Donoghue JP; Sanes JN; Hatsopoulos NG; Gaál G
    J Neurophysiol; 1998 Jan; 79(1):159-73. PubMed ID: 9425187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Existing motor state is favored at the expense of new movement during 13-35 Hz oscillatory synchrony in the human corticospinal system.
    Gilbertson T; Lalo E; Doyle L; Di Lazzaro V; Cioni B; Brown P
    J Neurosci; 2005 Aug; 25(34):7771-9. PubMed ID: 16120778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of low-gamma tACS on primary motor cortex in implicit motor learning.
    Giustiniani A; Tarantino V; Bonaventura RE; Smirni D; Turriziani P; Oliveri M
    Behav Brain Res; 2019 Dec; 376():112170. PubMed ID: 31442550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driving Human Motor Cortical Oscillations Leads to Behaviorally Relevant Changes in Local GABA
    Nowak M; Hinson E; van Ede F; Pogosyan A; Guerra A; Quinn A; Brown P; Stagg CJ
    J Neurosci; 2017 Apr; 37(17):4481-4492. PubMed ID: 28348136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-frequency rTMS over lateral premotor cortex induces lasting changes in regional activation and functional coupling of cortical motor areas.
    Chen WH; Mima T; Siebner HR; Oga T; Hara H; Satow T; Begum T; Nagamine T; Shibasaki H
    Clin Neurophysiol; 2003 Sep; 114(9):1628-37. PubMed ID: 12948791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes of motor-cortical oscillations associated with motor learning.
    Pollok B; Latz D; Krause V; Butz M; Schnitzler A
    Neuroscience; 2014 Sep; 275():47-53. PubMed ID: 24931763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional properties of human primary motor cortex gamma oscillations.
    Muthukumaraswamy SD
    J Neurophysiol; 2010 Nov; 104(5):2873-85. PubMed ID: 20884762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in corticospinal excitability and the direction of evoked movements during motor preparation: a TMS study.
    van Elswijk G; Schot WD; Stegeman DF; Overeem S
    BMC Neurosci; 2008 Jun; 9():51. PubMed ID: 18559096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct brain activation patterns for human maximal voluntary eccentric and concentric muscle actions.
    Fang Y; Siemionow V; Sahgal V; Xiong F; Yue GH
    Brain Res; 2004 Oct; 1023(2):200-12. PubMed ID: 15374746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve depends on the voluntary drive.
    Khaslavskaia S; Sinkjaer T
    Exp Brain Res; 2005 May; 162(4):497-502. PubMed ID: 15702321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.