BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 22306003)

  • 1. SUMO-2/3 conjugates accumulating under heat shock or MG132 treatment result largely from new protein synthesis.
    Castorálová M; Březinová D; Svéda M; Lipov J; Ruml T; Knejzlík Z
    Biochim Biophys Acta; 2012 Apr; 1823(4):911-9. PubMed ID: 22306003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition.
    Matsumoto H; Saitoh H
    Biochem Biophys Res Commun; 2016 Jul; 476(3):153-8. PubMed ID: 27181354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle.
    Schimmel J; Larsen KM; Matic I; van Hagen M; Cox J; Mann M; Andersen JS; Vertegaal AC
    Mol Cell Proteomics; 2008 Nov; 7(11):2107-22. PubMed ID: 18565875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies.
    Sha Z; Blyszcz T; González-Prieto R; Vertegaal ACO; Goldberg AL
    J Biol Chem; 2019 Oct; 294(42):15218-15234. PubMed ID: 31285264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishment of a human cell line stably overexpressing mouse Nip45 and characterization of Nip45 subcellular localization.
    Hashiguchi K; Ozaki M; Kuraoka I; Saitoh H
    Biochem Biophys Res Commun; 2013 Jan; 430(1):72-7. PubMed ID: 23159618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Converging Small Ubiquitin-like Modifier (SUMO) and Ubiquitin Signaling: Improved Methodology Identifies Co-modified Target Proteins.
    Cuijpers SAG; Willemstein E; Vertegaal ACO
    Mol Cell Proteomics; 2017 Dec; 16(12):2281-2295. PubMed ID: 28951443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative proteomic analysis identifies a role for SUMO in protein quality control.
    Tatham MH; Matic I; Mann M; Hay RT
    Sci Signal; 2011 Jun; 4(178):rs4. PubMed ID: 21693764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity.
    Brunet Simioni M; De Thonel A; Hammann A; Joly AL; Bossis G; Fourmaux E; Bouchot A; Landry J; Piechaczyk M; Garrido C
    Oncogene; 2009 Sep; 28(37):3332-44. PubMed ID: 19597476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteasome inhibition induces both pro- and anti-cell death pathways in prostate cancer cells.
    Yang W; Monroe J; Zhang Y; George D; Bremer E; Li H
    Cancer Lett; 2006 Nov; 243(2):217-27. PubMed ID: 16413676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination therapy for hepatitis C virus with heat-shock protein 90 inhibitor 17-AAG and proteasome inhibitor MG132.
    Ujino S; Yamaguchi S; Shimotohno K; Takaku H
    Antivir Chem Chemother; 2010 Mar; 20(4):161-7. PubMed ID: 20231781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat shock induces a massive but differential inactivation of SUMO-specific proteases.
    Pinto MP; Carvalho AF; Grou CP; Rodríguez-Borges JE; Sá-Miranda C; Azevedo JE
    Biochim Biophys Acta; 2012 Oct; 1823(10):1958-66. PubMed ID: 22867988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small Ubiquitin-like Modifier Alters IFN Response.
    Maarifi G; Maroui MA; Dutrieux J; Dianoux L; Nisole S; Chelbi-Alix MK
    J Immunol; 2015 Sep; 195(5):2312-24. PubMed ID: 26223657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PIAS1-mediated sumoylation promotes STUbL-dependent proteasomal degradation of the human telomeric protein TRF2.
    Her J; Jeong YY; Chung IK
    FEBS Lett; 2015 Oct; 589(21):3277-86. PubMed ID: 26450775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SUMOylation and the HSF1-Regulated Chaperone Network Converge to Promote Proteostasis in Response to Heat Shock.
    Liebelt F; Sebastian RM; Moore CL; Mulder MPC; Ovaa H; Shoulders MD; Vertegaal ACO
    Cell Rep; 2019 Jan; 26(1):236-249.e4. PubMed ID: 30605679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the SUMO1 and ubiquitin conjugation pathways during the inhibition of proteasome activity with evidence of SUMO1 recycling.
    Bailey D; O'Hare P
    Biochem J; 2005 Dec; 392(Pt 2):271-81. PubMed ID: 16117725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and environmental changes in SUMO homeostasis lead to nuclear mRNA retention in plants.
    Muthuswamy S; Meier I
    Planta; 2011 Jan; 233(1):201-8. PubMed ID: 20872268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of cellular SUMO and SUMO-ubiquitin hybrid conjugates.
    Schnellhardt M; Uzunova K; Bade VN; Krause A; Weisshaar SR; Praefcke GJ; Dohmen RJ
    Methods Mol Biol; 2012; 832():81-92. PubMed ID: 22350877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstitution of SUMO-dependent ubiquitylation in vitro.
    Keusekotten K; Praefcke GJ
    Methods Mol Biol; 2012; 832():111-23. PubMed ID: 22350879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct patterns of HSP30 and HSP70 degradation in Xenopus laevis A6 cells recovering from thermal stress.
    Khan S; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Feb; 168():1-10. PubMed ID: 24231468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 26S proteasome function and Hsp90 activity involved in the regulation of HsfA2 expression in response to oxidative stress.
    Nishizawa-Yokoi A; Tainaka H; Yoshida E; Tamoi M; Yabuta Y; Shigeoka S
    Plant Cell Physiol; 2010 Mar; 51(3):486-96. PubMed ID: 20147301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.