BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22306079)

  • 21. Minimizing asynchronism to improve the performances of anaerobic co-digestion of food waste and corn stover.
    Zhou Q; Shen F; Yuan H; Zou D; Liu Y; Zhu B; Jaffu M; Chufo A; Li X
    Bioresour Technol; 2014 Aug; 166():31-6. PubMed ID: 24880810
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis.
    Wang FQ; Xie H; Chen W; Wang ET; Du FG; Song AD
    Bioresour Technol; 2013 Sep; 144():572-8. PubMed ID: 23896439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of white-rot fungi-assisted alkaline/oxidative pretreatment of corn straw undergoing enzymatic hydrolysis by cellulase.
    Yu H; Zhang X; Song L; Ke J; Xu C; Du W; Zhang J
    J Biosci Bioeng; 2010 Dec; 110(6):660-4. PubMed ID: 20817594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pretreatment of corn stover using low-moisture anhydrous ammonia (LMAA) process.
    Yoo CG; Nghiem NP; Hicks KB; Kim TH
    Bioresour Technol; 2011 Nov; 102(21):10028-34. PubMed ID: 21903384
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solid-state co-digestion of expired dog food and corn stover for methane production.
    Xu F; Li Y
    Bioresour Technol; 2012 Aug; 118():219-26. PubMed ID: 22705527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of biological pretreatments in enhancing corn straw biogas production.
    Zhong W; Zhang Z; Luo Y; Sun S; Qiao W; Xiao M
    Bioresour Technol; 2011 Dec; 102(24):11177-82. PubMed ID: 22000969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks.
    Egüés I; Sanchez C; Mondragon I; Labidi J
    Bioresour Technol; 2012 Jan; 103(1):239-48. PubMed ID: 22029960
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of surfactants on pretreatment of corn stover.
    Qing Q; Yang B; Wyman CE
    Bioresour Technol; 2010 Aug; 101(15):5941-51. PubMed ID: 20304637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamics of fermentation quality, physiochemical property and enzymatic hydrolysis of high-moisture corn stover ensiled with sulfuric acid or sodium hydroxide.
    He L; Lv H; Wang C; Zhou W; Pian R; Zhang Q; Chen X
    Bioresour Technol; 2020 Feb; 298():122510. PubMed ID: 31837582
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Significantly improving enzymatic saccharification of high crystallinity index's corn stover by combining ionic liquid [Bmim]Cl-HCl-water media with dilute NaOH pretreatment.
    He YC; Liu F; Gong L; Zhu ZZ; Ding Y; Wang C; Xue YF; Rui H; Tao ZC; Zhang DP; Ma CL
    Bioresour Technol; 2015; 189():421-425. PubMed ID: 25921785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose.
    Liu C; Wyman CE
    Bioresour Technol; 2005 Dec; 96(18):1978-85. PubMed ID: 16112485
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements.
    Liu C; Yuan H; Zou D; Liu Y; Zhu B; Li X
    Biomed Res Int; 2015; 2015():125241. PubMed ID: 26137469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alkaline organosolv pretreatment of corn stover for enhancing the enzymatic digestibility.
    Yuan W; Gong Z; Wang G; Zhou W; Liu Y; Wang X; Zhao M
    Bioresour Technol; 2018 Oct; 265():464-470. PubMed ID: 29935456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compatibility of High-Moisture Storage for Biochemical Conversion of Corn Stover: Storage Performance at Laboratory and Field Scales.
    Wendt LM; Murphy JA; Smith WA; Robb T; Reed DW; Ray AE; Liang L; He Q; Sun N; Hoover AN; Nguyen QA
    Front Bioeng Biotechnol; 2018; 6():30. PubMed ID: 29632861
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mass balance and transformation of corn stover by pretreatment with different dilute organic acids.
    Qin L; Liu ZH; Li BZ; Dale BE; Yuan YJ
    Bioresour Technol; 2012 May; 112():319-26. PubMed ID: 22437047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of laccase on lignin depolymerization and enzymatic hydrolysis of ensiled corn stover.
    Chen Q; Marshall MN; Geib SM; Tien M; Richard TL
    Bioresour Technol; 2012 Aug; 117():186-92. PubMed ID: 22613895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.
    Kumar R; Mago G; Balan V; Wyman CE
    Bioresour Technol; 2009 Sep; 100(17):3948-62. PubMed ID: 19362819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment.
    Liu L; Sun J; Li M; Wang S; Pei H; Zhang J
    Bioresour Technol; 2009 Dec; 100(23):5853-8. PubMed ID: 19581085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The impact of enzyme characteristics on corn stover fiber degradation and acid production during ensiled storage.
    Ren H; Richard TL; Moore KJ
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):221-38. PubMed ID: 18478391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production.
    Narayanaswamy N; Faik A; Goetz DJ; Gu T
    Bioresour Technol; 2011 Jul; 102(13):6995-7000. PubMed ID: 21555219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.