BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 22306166)

  • 1. Synthesis of bioethanol from biomass-derived syngas over carbon nanotube/silica supported catalyst.
    Feng W; Yao J; Wu H; Ji P
    Biotechnol Adv; 2012; 30(4):874-8. PubMed ID: 22306166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-Mordenite and Cu/ZnO catalysts.
    Li X; San X; Zhang Y; Ichii T; Meng M; Tan Y; Tsubaki N
    ChemSusChem; 2010 Oct; 3(10):1192-9. PubMed ID: 20715046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles.
    Kim YK; Park SE; Lee H; Yun JY
    Bioresour Technol; 2014 May; 159():446-50. PubMed ID: 24703605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomass-derived syngas fermentation into biofuels: Opportunities and challenges.
    Munasinghe PC; Khanal SK
    Bioresour Technol; 2010 Jul; 101(13):5013-22. PubMed ID: 20096574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of carbon nanotubes using mesoporous Fe-MCM-41 catalysts.
    Ko JR; Ahn WS
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3442-5. PubMed ID: 17252785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steam plasmatron gasification of distillers grains residue from ethanol production.
    Shie JL; Tsou FJ; Lin KL
    Bioresour Technol; 2010 Jul; 101(14):5571-7. PubMed ID: 20163957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective growth of SWNTs on partially reduced monometallic cobalt catalyst.
    He M; Chernov AI; Fedotov PV; Obraztsova ED; Rikkinen E; Zhu Z; Sainio J; Jiang H; Nasibulin AG; Kauppinen EI; Niemelä M; Krause AO
    Chem Commun (Camb); 2011 Jan; 47(4):1219-21. PubMed ID: 21103594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient hydrogen production from ethanol and glycerol by vapour-phase reforming processes with new cobalt-based catalysts.
    Pereira EB; de la Piscina PR; Homs N
    Bioresour Technol; 2011 Feb; 102(3):3419-23. PubMed ID: 21044836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective chemical vapor deposition synthesis of double-wall carbon nanotubes on mesoporous silica.
    Ramesh P; Okazaki T; Taniguchi R; Kimura J; Sugai T; Sato K; Ozeki Y; Shinohara H
    J Phys Chem B; 2005 Jan; 109(3):1141-7. PubMed ID: 16851073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of hydrogen production of methanol reformation using Cu/ZnO/Al2O3 catalyst.
    Wu HS; Chung SC
    J Comb Chem; 2007; 9(6):990-7. PubMed ID: 17900166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective synthesis of (9,8) single walled carbon nanotubes on cobalt incorporated TUD-1 catalysts.
    Wang H; Wang B; Quek XY; Wei L; Zhao J; Li LJ; Chan-Park MB; Yang Y; Chen Y
    J Am Chem Soc; 2010 Dec; 132(47):16747-9. PubMed ID: 21049942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganic nanofibers with tailored placement of nanocatalysts for hydrogen production via alkaline hydrolysis of glucose.
    Hansen NS; Ferguson TE; Panels JE; Park AH; Joo YL
    Nanotechnology; 2011 Aug; 22(32):325302. PubMed ID: 21772071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dechlorination pathway for synthesis of horn shaped carbon nanotubes and its adsorption properties for CO2, CH4, CO and N2.
    Sawant SY; Somani RS; Bajaj HC; Sharma SS
    J Hazard Mater; 2012 Aug; 227-228():317-26. PubMed ID: 22682801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the outskirts of Fe and Co catalyst particles in alumina-supported catalytic CVD carbon nanotube growth.
    Rümmeli MH; Schäffel F; Bachmatiuk A; Adebimpe D; Trotter G; Börrnert F; Scott A; Coric E; Sparing M; Rellinghaus B; McCormick PG; Cuniberti G; Knupfer M; Schultz L; Büchner B
    ACS Nano; 2010 Feb; 4(2):1146-52. PubMed ID: 20088596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation.
    Kim YK; Lee H
    Bioresour Technol; 2016 Mar; 204():139-144. PubMed ID: 26773957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective electrochemical reduction of CO2 to CO with a cobalt chlorin complex adsorbed on multi-walled carbon nanotubes in water.
    Aoi S; Mase K; Ohkubo K; Fukuzumi S
    Chem Commun (Camb); 2015 Jun; 51(50):10226-8. PubMed ID: 26021853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CoSi particles on silica support as a highly active and selective catalyst for naphthalene hydrogenation.
    Liang C; Zhao A; Zhang X; Ma Z; Prins R
    Chem Commun (Camb); 2009 Apr; (15):2047-9. PubMed ID: 19333486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres.
    Zhang H; Xiao R; Wang D; He G; Shao S; Zhang J; Zhong Z
    Bioresour Technol; 2011 Mar; 102(5):4258-64. PubMed ID: 21232946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-walled carbon nanotubes of controlled diameter and bundle size and their field emission properties.
    Zhang L; Balzano L; Resasco DE
    J Phys Chem B; 2005 Aug; 109(30):14375-81. PubMed ID: 16852808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.