These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22306201)

  • 21. Quantitative proteomics analysis of differential protein expression and oxidative modification of specific proteins in the brains of old mice.
    Poon HF; Vaishnav RA; Getchell TV; Getchell ML; Butterfield DA
    Neurobiol Aging; 2006 Jul; 27(7):1010-9. PubMed ID: 15979213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuronal RNA oxidation is a prominent feature of familial Alzheimer's disease.
    Nunomura A; Chiba S; Lippa CF; Cras P; Kalaria RN; Takeda A; Honda K; Smith MA; Perry G
    Neurobiol Dis; 2004 Oct; 17(1):108-13. PubMed ID: 15350971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zinc and cadmium specifically interfere with RNA-binding activity of human iron regulatory protein 1.
    Martelli A; Moulis JM
    J Inorg Biochem; 2004 Aug; 98(8):1413-20. PubMed ID: 15271519
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Involvement of oxidative stress in ascorbate-induced proapoptotic death of PC12 cells.
    Song JH; Shin SH; Wang W; Ross GM
    Exp Neurol; 2001 Jun; 169(2):425-37. PubMed ID: 11358456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A; DelRaso NJ; Schlager JJ; Chan VT
    Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell and tissue responses to oxidative damage.
    Janssen YM; Van Houten B; Borm PJ; Mossman BT
    Lab Invest; 1993 Sep; 69(3):261-74. PubMed ID: 8377469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteasome inhibition increases DNA and RNA oxidation in astrocyte and neuron cultures.
    Ding Q; Dimayuga E; Markesbery WR; Keller JN
    J Neurochem; 2004 Dec; 91(5):1211-8. PubMed ID: 15569264
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidative Modifications of RNA and Its Potential Roles in Biosystem.
    Tanaka M; Chock PB
    Front Mol Biosci; 2021; 8():685331. PubMed ID: 34055897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DES-ROD: Exploring Literature to Develop New Links between RNA Oxidation and Human Diseases.
    Essack M; Salhi A; Van Neste C; Raies AB; Tifratene F; Uludag M; Hungler A; Zaric B; Zafirovic S; Gojobori T; Isenovic E; Bajic VP
    Oxid Med Cell Longev; 2020; 2020():5904315. PubMed ID: 32308806
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantification of oxidized levels of specific RNA species using an aldehyde reactive probe.
    Tanaka M; Han S; Küpfer PA; Leumann CJ; Sonntag WE
    Anal Biochem; 2011 Oct; 417(1):142-8. PubMed ID: 21693097
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sublethal RNA oxidation as a mechanism for neurodegenerative disease.
    Castellani RJ; Nunomura A; Rolston RK; Moreira PI; Takeda A; Perry G; Smith MA
    Int J Mol Sci; 2008 May; 9(5):789-806. PubMed ID: 19325784
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Battle against RNA oxidation: molecular mechanisms for reducing oxidized RNA to protect cells.
    Li Z; Malla S; Shin B; Li JM
    Wiley Interdiscip Rev RNA; 2014; 5(3):335-46. PubMed ID: 24375979
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Consequences of RNA oxidation on protein synthesis rate and fidelity: implications for the pathophysiology of neuropsychiatric disorders.
    Nunomura A; Lee HG; Zhu X; Perry G
    Biochem Soc Trans; 2017 Oct; 45(5):1053-1066. PubMed ID: 28778984
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current Update on Synopsis of miRNA Dysregulation in Neurological Disorders.
    Kamal MA; Mushtaq G; Greig NH
    CNS Neurol Disord Drug Targets; 2015; 14(4):492-501. PubMed ID: 25714967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The biomarker and therapeutic potential of miRNA in Alzheimer's disease.
    Bekris LM; Leverenz JB
    Neurodegener Dis Manag; 2015; 5(1):61-74. PubMed ID: 25711455
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The potential of microRNAs as biofluid markers of neurodegenerative diseases--a systematic review.
    Danborg PB; Simonsen AH; Waldemar G; Heegaard NH
    Biomarkers; 2014 Jun; 19(4):259-68. PubMed ID: 24678935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasma microRNA biomarkers for detection of mild cognitive impairment: biomarker validation study.
    Sheinerman KS; Tsivinsky VG; Abdullah L; Crawford F; Umansky SR
    Aging (Albany NY); 2013 Dec; 5(12):925-38. PubMed ID: 24368295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuronal dark matter: the emerging role of microRNAs in neurodegeneration.
    Goodall EF; Heath PR; Bandmann O; Kirby J; Shaw PJ
    Front Cell Neurosci; 2013 Oct; 7():178. PubMed ID: 24133413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Circulating microRNAs in Alzheimer's disease: the search for novel biomarkers.
    Dorval V; Nelson PT; Hébert SS
    Front Mol Neurosci; 2013; 6():24. PubMed ID: 24009553
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MicroRNA in Alzheimer's disease: an exploratory study in brain, cerebrospinal fluid and plasma.
    Bekris LM; Lutz F; Montine TJ; Yu CE; Tsuang D; Peskind ER; Leverenz JB
    Biomarkers; 2013 Aug; 18(5):455-66. PubMed ID: 23822153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.