These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2230641)

  • 1. Inhibition of escape tailflip in crayfish during backward walking and the defense posture.
    Beall SP; Langley DJ; Edwards DH
    J Exp Biol; 1990 Sep; 152():577-82. PubMed ID: 2230641
    [No Abstract]   [Full Text] [Related]  

  • 2. Crayfish escape behavior and central synapses. II. Physiological mechanisms underlying behavioral habituation.
    Zucker RS
    J Neurophysiol; 1972 Sep; 35(5):621-37. PubMed ID: 5054507
    [No Abstract]   [Full Text] [Related]  

  • 3. Crayfish escape behavior and central synapses. I. Neural circuit exciting lateral giant fiber.
    Zucker RS
    J Neurophysiol; 1972 Sep; 35(5):599-620. PubMed ID: 5054506
    [No Abstract]   [Full Text] [Related]  

  • 4. Habituation of Backward Escape Swimming in the Marbled Crayfish.
    Kasuya A; Nagayama T
    Zoolog Sci; 2016 Feb; 33(1):6-12. PubMed ID: 26853863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Habituation of LG-mediated tailflip in the crayfish.
    Nagayama T; Araki M
    Invert Neurosci; 2015 Jun; 15(2):178. PubMed ID: 25796506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity of neural circuits that inhibit escape in crayfish.
    Berkowitz A; Vu ET; Krasne FB
    Ann N Y Acad Sci; 1998 Nov; 860():461-3. PubMed ID: 9928339
    [No Abstract]   [Full Text] [Related]  

  • 7. Not so fast: giant interneurons control precise movements of antennal scales during escape behavior of crayfish.
    Herberholz J; Swierzbinski ME; Widjaja A; Kohn A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Oct; 205(5):687-698. PubMed ID: 31267220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crayfish escape behavior: production of tailflips without giant fiber activity.
    Kramer AP; Krasne FB
    J Neurophysiol; 1984 Aug; 52(2):189-211. PubMed ID: 6090603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of habituation during escape swimming in starved crayfish.
    Kato N; Fujiyama N; Nagayama T
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Dec; 204(12):999-1005. PubMed ID: 30353372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperativity-dependent long-lasting potentiation in the crayfish lateral giant escape reaction circuit.
    Miller MW; Lee SC; Krasne FB
    J Neurosci; 1987 Apr; 7(4):1081-92. PubMed ID: 3572475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal adaptations to changes in the social dominance status of crayfish.
    Yeh SR; Musolf BE; Edwards DH
    J Neurosci; 1997 Jan; 17(2):697-708. PubMed ID: 8987791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholinergic transmission at the first synapse of the circuit mediating the crayfish lateral giant escape reaction.
    Miller MW; Vu ET; Krasne FB
    J Neurophysiol; 1992 Dec; 68(6):2174-84. PubMed ID: 1337103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory interneurons: some observations concerning the physiology and related structural significance of two cells in the crayfish brain.
    Wilkens LA; Larimer JL
    Tissue Cell; 1973; 5(3):393-400. PubMed ID: 4744678
    [No Abstract]   [Full Text] [Related]  

  • 14. Altered excitability of the crayfish lateral giant escape reflex during agonistic encounters.
    Krasne FB; Shamsian A; Kulkarni R
    J Neurosci; 1997 Jan; 17(2):709-16. PubMed ID: 8987792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of leg movements on the synaptic activity of descending statocyst interneurons in crayfish, Procambarus clarkii.
    Hama N; Takahata M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Dec; 189(12):877-88. PubMed ID: 14593487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crayfish lateral giants as command neurons for escape behavior.
    Olson GC; Krasne FB
    Brain Res; 1981 Jun; 214(1):89-100. PubMed ID: 7237168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central inhibition of an identified mechanosensory interneuron in the crayfish.
    Wilkens LA; Marzelli GA
    J Neurobiol; 1979 May; 10(3):247-54. PubMed ID: 458437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presynaptic inhibition is mediated by histamine and GABA in the crustacean escape reaction.
    el Manira A; Clarac F
    J Neurophysiol; 1994 Mar; 71(3):1088-95. PubMed ID: 8201404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral transition of crayfish avoidance reaction in response to uropod stimulation.
    Nagayama T; Takahata M; Hisada M
    Exp Biol; 1986; 46(2):75-82. PubMed ID: 3817117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crayfish antennal neuropil. II. Periodic bursting elicited by sensory stimulation and extrinsic current in interneurons.
    Glantz RM
    J Neurophysiol; 1978 Sep; 41(5):1314-27. PubMed ID: 702195
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.