These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 22306764)

  • 1. Kinetic model of HIV infection including hematopoietic progenitor cells.
    Zhdanov VP
    Math Biosci; 2012 Mar; 236(1):36-43. PubMed ID: 22306764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting HIV latency: resting memory T cells, hematopoietic progenitor cells and future directions.
    Sebastian NT; Collins KL
    Expert Rev Anti Infect Ther; 2014 Oct; 12(10):1187-201. PubMed ID: 25189526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peripheral blood-derived CD34+ progenitor cells: CXC chemokine receptor 4 and CC chemokine receptor 5 expression and infection by HIV.
    Ruiz ME; Cicala C; Arthos J; Kinter A; Catanzaro AT; Adelsberger J; Holmes KL; Cohen OJ; Fauci AS
    J Immunol; 1998 Oct; 161(8):4169-76. PubMed ID: 9780190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered clonogenic capability and stromal cell function characterize bone marrow of HIV-infected subjects with low CD4+ T cell counts despite viral suppression during HAART.
    Isgrò A; Leti W; De Santis W; Marziali M; Esposito A; Fimiani C; Luzi G; Pinti M; Cossarizza A; Aiuti F; Mezzaroma I
    Clin Infect Dis; 2008 Jun; 46(12):1902-10. PubMed ID: 18462177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opportunistic infection as a cause of transient viremia in chronically infected HIV patients under treatment with HAART.
    Jones LE; Perelson AS
    Bull Math Biol; 2005 Nov; 67(6):1227-51. PubMed ID: 16023709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can HIV infection be eradicated through use of potent antiviral agents?
    Josefsson L; Dahl V; Palmer S
    Curr Opin Infect Dis; 2010 Dec; 23(6):628-32. PubMed ID: 20847693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of HIV persistence: implications for vaccines and therapy.
    Bremermann HJ
    J Acquir Immune Defic Syndr Hum Retrovirol; 1995 Aug; 9(5):459-83. PubMed ID: 7627623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lymphocyte dynamics, apoptosis and HIV infection.
    Frost SD; Michie CA
    Trends Microbiol; 1996 Feb; 4(2):77-82. PubMed ID: 8820572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical models of HIV and the immune system.
    Wodarz D
    Novartis Found Symp; 2003; 254():193-207; discussion 207-22, 250-2. PubMed ID: 14712939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired in-vitro growth of megakaryocytic colonies derived from CD34 cells of HIV-1-infected patients with active viral replication.
    Costantini A; Giuliodoro S; Mancini S; Butini L; Regnery CM; Silvestri G; Greco F; Leoni P; Montroni M
    AIDS; 2006 Aug; 20(13):1713-20. PubMed ID: 16931935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of CD4 receptor downregulation and its downstream signaling molecules on HIV-1 latency.
    Kim KC; Kim HG; Roh TY; Park J; Jung KM; Lee JS; Choi SY; Kim SS; Choi BS
    Biochem Biophys Res Commun; 2011 Jan; 404(2):646-51. PubMed ID: 21146497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Productive human immunodeficiency virus type 1 infection in peripheral blood predominantly takes place in CD4/CD8 double-negative T lymphocytes.
    Kaiser P; Joos B; Niederöst B; Weber R; Günthard HF; Fischer M
    J Virol; 2007 Sep; 81(18):9693-706. PubMed ID: 17609262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the influence of activation-induced apoptosis of CD4+ and CD8+ T-cells on the immune system response of a HIV-infected patient.
    Stan GB; Belmudes F; Fonteneau R; Zeggwagh F; Lefebvre MA; Michelet C; Ernst D
    IET Syst Biol; 2008 Mar; 2(2):94-102. PubMed ID: 18397120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target cell limited and immune control models of HIV infection: a comparison.
    De Boer RJ; Perelson AS
    J Theor Biol; 1998 Feb; 190(3):201-14. PubMed ID: 9514649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hide, shield and strike back: how HIV-infected cells avoid immune eradication.
    Peterlin BM; Trono D
    Nat Rev Immunol; 2003 Feb; 3(2):97-107. PubMed ID: 12563294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A delay-differential equation model of HIV related cancer-immune system dynamics.
    Foryś U; Poleszczuk J
    Math Biosci Eng; 2011 Apr; 8(2):627-41. PubMed ID: 21631150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HIV replication leads to skewed maturation of CD8-positive T-cell responses in infected children.
    Montesano C; Anselmi A; Palma P; Bernardi S; Cicconi R; Mattei M; Castelli-Gattinara G; Ciccozzi M; Colizzi V; Amicosante M
    New Microbiol; 2010 Oct; 33(4):303-9. PubMed ID: 21213588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach to HIV therapy: highly active antiretroviral therapy and autologous hematopoietic cell transplantation.
    Pippi F
    Med Hypotheses; 2008; 70(2):291-3. PubMed ID: 17681707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling plasma virus concentration during primary HIV infection.
    Stafford MA; Corey L; Cao Y; Daar ES; Ho DD; Perelson AS
    J Theor Biol; 2000 Apr; 203(3):285-301. PubMed ID: 10716909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HIV-specific CD4+ T cells and viremia: who's in control?
    Jansen CA; van Baarle D; Miedema F
    Trends Immunol; 2006 Mar; 27(3):119-24. PubMed ID: 16458605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.