These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22306924)

  • 1. A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos.
    Materna SC; Davidson EH
    Dev Biol; 2012 Apr; 364(1):77-87. PubMed ID: 22306924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A regulatory gene network that directs micromere specification in the sea urchin embryo.
    Oliveri P; Carrick DM; Davidson EH
    Dev Biol; 2002 Jun; 246(1):209-28. PubMed ID: 12027443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ABCC5 is required for cAMP-mediated hindgut invagination in sea urchin embryos.
    Shipp LE; Hill RZ; Moy GW; Gökırmak T; Hamdoun A
    Development; 2015 Oct; 142(20):3537-48. PubMed ID: 26395488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo.
    Croce JC; McClay DR
    Development; 2010 Jan; 137(1):83-91. PubMed ID: 20023163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks.
    Amore G; Yavrouian RG; Peterson KJ; Ransick A; McClay DR; Davidson EH
    Dev Biol; 2003 Sep; 261(1):55-81. PubMed ID: 12941621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis.
    Sweet HC; Hodor PG; Ettensohn CA
    Development; 1999 Dec; 126(23):5255-65. PubMed ID: 10556051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres.
    Revilla-i-Domingo R; Minokawa T; Davidson EH
    Dev Biol; 2004 Oct; 274(2):438-51. PubMed ID: 15385170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LvNumb works synergistically with Notch signaling to specify non-skeletal mesoderm cells in the sea urchin embryo.
    Range RC; Glenn TD; Miranda E; McClay DR
    Development; 2008 Aug; 135(14):2445-54. PubMed ID: 18550713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of pmar1 controls specification of micromeres in the sea urchin embryo.
    Oliveri P; Davidson EH; McClay DR
    Dev Biol; 2003 Jun; 258(1):32-43. PubMed ID: 12781680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo.
    McClay DR; Peterson RE; Range RC; Winter-Vann AM; Ferkowicz MJ
    Development; 2000 Dec; 127(23):5113-22. PubMed ID: 11060237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulative deployment of the skeletogenic gene regulatory network during sea urchin development.
    Sharma T; Ettensohn CA
    Development; 2011 Jun; 138(12):2581-90. PubMed ID: 21610034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct transcriptional regulation of Nanos2 in the germ line and soma by the Wnt and delta/notch pathways.
    Oulhen N; Swartz SZ; Wang L; Wikramanayake A; Wessel GM
    Dev Biol; 2019 Aug; 452(1):34-42. PubMed ID: 31075220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage.
    Peter IS; Davidson EH
    Dev Biol; 2010 Apr; 340(2):188-99. PubMed ID: 19895806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Fringe-modified Notch signal affects specification of mesoderm and endoderm in the sea urchin embryo.
    Peterson RE; McClay DR
    Dev Biol; 2005 Jun; 282(1):126-37. PubMed ID: 15936334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells.
    Ettensohn CA; Ruffins SW
    Development; 1993 Apr; 117(4):1275-85. PubMed ID: 8404530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hedgehog signaling patterns mesoderm in the sea urchin.
    Walton KD; Warner J; Hertzler PH; McClay DR
    Dev Biol; 2009 Jul; 331(1):26-37. PubMed ID: 19393640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene regulatory network interactions in sea urchin endomesoderm induction.
    Sethi AJ; Angerer RC; Angerer LM
    PLoS Biol; 2009 Feb; 7(2):e1000029. PubMed ID: 19192949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids.
    Erkenbrack EM; Davidson EH; Peter IS
    Development; 2018 Dec; 145(24):. PubMed ID: 30470703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.