BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22306974)

  • 1. Forced desynchronization of activity rhythms in a model of chronic jet lag in mice.
    Casiraghi LP; Oda GA; Chiesa JJ; Friesen WO; Golombek DA
    J Biol Rhythms; 2012 Feb; 27(1):59-69. PubMed ID: 22306974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of chronic forced circadian desynchronization on body weight and metabolism in male mice.
    Casiraghi LP; Alzamendi A; Giovambattista A; Chiesa JJ; Golombek DA
    Physiol Rep; 2016 Apr; 4(8):. PubMed ID: 27125665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian disruption accelerates liver carcinogenesis in mice.
    Filipski E; Subramanian P; Carrière J; Guettier C; Barbason H; Lévi F
    Mutat Res; 2009; 680(1-2):95-105. PubMed ID: 19833225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Re-entrainment behavior of Djungarian hamsters (Phodopus sungorus) with different rhythmic phenotype following light-dark shifts.
    Schöttner K; Limbach A; Weinert D
    Chronobiol Int; 2011 Feb; 28(1):58-69. PubMed ID: 21182405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative aspects of circadian rhythms in homeotherms, re-entrainment after phase shifts of the zeitgeber.
    Pohl H
    Int J Chronobiol; 1978; 5(4):493-517. PubMed ID: 700901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian disruption in experimental cancer processes.
    Filipski E; Lévi F
    Integr Cancer Ther; 2009 Dec; 8(4):298-302. PubMed ID: 20042408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermocyclic and photocyclic entrainment of circadian locomotor activity rhythms in sleepy lizards, Tiliqua rugosa.
    Ellis DJ; Firth BT; Belan I
    Chronobiol Int; 2009 Oct; 26(7):1369-88. PubMed ID: 19916837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feeding entrainment of food-anticipatory activity and per1 expression in the brain and liver of zebrafish under different lighting and feeding conditions.
    López-Olmeda JF; Tartaglione EV; de la Iglesia HO; Sánchez-Vázquez FJ
    Chronobiol Int; 2010 Aug; 27(7):1380-400. PubMed ID: 20795882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronization of mammalian circadian rhythms by melatonin.
    Armstrong SM; Cassone VM; Chesworth MJ; Redman JR; Short RV
    J Neural Transm Suppl; 1986; 21():375-94. PubMed ID: 3462339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase shifts of human circadian rhythms due to shifts of artificial Zeitgebers.
    Wever RA
    Chronobiologia; 1980; 7(3):303-27. PubMed ID: 6108838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic circadian desynchronization of feeding-fasting rhythm generates alterations in daily glycemia, LDL cholesterolemia and microbiota composition in mice.
    Trebucq LL; Lamberti ML; Rota R; Aiello I; Borio C; Bilen M; Golombek DA; Plano SA; Chiesa JJ
    Front Nutr; 2023; 10():1154647. PubMed ID: 37125029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulated Chronic Jet Lag Affects the Structural and Functional Complexity of Hippocampal Neurons in Mice.
    Kumari R; Verma V; Singaravel M
    Neuroscience; 2024 Apr; 543():1-12. PubMed ID: 38354900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of scheduled forced wheel activity on body weight in male F344 rats undergoing chronic circadian desynchronization.
    Tsai LL; Tsai YC
    Int J Obes (Lond); 2007 Sep; 31(9):1368-77. PubMed ID: 17356527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of chronic jet lag on the central and peripheral circadian clocks in CBA/N mice.
    Iwamoto A; Kawai M; Furuse M; Yasuo S
    Chronobiol Int; 2014 Mar; 31(2):189-98. PubMed ID: 24147659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation to experimental jet-lag in R6/2 mice despite circadian dysrhythmia.
    Wood NI; McAllister CJ; Cuesta M; Aungier J; Fraenkel E; Morton AJ
    PLoS One; 2013; 8(2):e55036. PubMed ID: 23390510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direction-dependent effects of chronic "jet-lag" on hippocampal neurogenesis.
    Kott J; Leach G; Yan L
    Neurosci Lett; 2012 May; 515(2):177-80. PubMed ID: 22465247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forced desynchronization model for a diurnal primate.
    Silva CA; Melo LIM; Pires AR; Barbalho JC; Melo AV; Fernandes DAC; Oliveira EB; Azevedo CVM; Cambras T; Díez-Noguera A; Fontenele-Araujo J
    Chronobiol Int; 2018 Jan; 35(1):35-48. PubMed ID: 29211510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The phasing of circadian rhythms in mice kept under normal or short photoperiods.
    Weinert D; Freyberg S; Touitou Y; Djeridane Y; Waterhouse JM
    Physiol Behav; 2005 Apr; 84(5):791-8. PubMed ID: 15885257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The times they're a-changing: effects of circadian desynchronization on physiology and disease.
    Golombek DA; Casiraghi LP; Agostino PV; Paladino N; Duhart JM; Plano SA; Chiesa JJ
    J Physiol Paris; 2013 Sep; 107(4):310-22. PubMed ID: 23545147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.