These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22306974)

  • 1. Forced desynchronization of activity rhythms in a model of chronic jet lag in mice.
    Casiraghi LP; Oda GA; Chiesa JJ; Friesen WO; Golombek DA
    J Biol Rhythms; 2012 Feb; 27(1):59-69. PubMed ID: 22306974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of chronic forced circadian desynchronization on body weight and metabolism in male mice.
    Casiraghi LP; Alzamendi A; Giovambattista A; Chiesa JJ; Golombek DA
    Physiol Rep; 2016 Apr; 4(8):. PubMed ID: 27125665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian disruption accelerates liver carcinogenesis in mice.
    Filipski E; Subramanian P; Carrière J; Guettier C; Barbason H; Lévi F
    Mutat Res; 2009; 680(1-2):95-105. PubMed ID: 19833225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Re-entrainment behavior of Djungarian hamsters (Phodopus sungorus) with different rhythmic phenotype following light-dark shifts.
    Schöttner K; Limbach A; Weinert D
    Chronobiol Int; 2011 Feb; 28(1):58-69. PubMed ID: 21182405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative aspects of circadian rhythms in homeotherms, re-entrainment after phase shifts of the zeitgeber.
    Pohl H
    Int J Chronobiol; 1978; 5(4):493-517. PubMed ID: 700901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian disruption in experimental cancer processes.
    Filipski E; Lévi F
    Integr Cancer Ther; 2009 Dec; 8(4):298-302. PubMed ID: 20042408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermocyclic and photocyclic entrainment of circadian locomotor activity rhythms in sleepy lizards, Tiliqua rugosa.
    Ellis DJ; Firth BT; Belan I
    Chronobiol Int; 2009 Oct; 26(7):1369-88. PubMed ID: 19916837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feeding entrainment of food-anticipatory activity and per1 expression in the brain and liver of zebrafish under different lighting and feeding conditions.
    López-Olmeda JF; Tartaglione EV; de la Iglesia HO; Sánchez-Vázquez FJ
    Chronobiol Int; 2010 Aug; 27(7):1380-400. PubMed ID: 20795882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronization of mammalian circadian rhythms by melatonin.
    Armstrong SM; Cassone VM; Chesworth MJ; Redman JR; Short RV
    J Neural Transm Suppl; 1986; 21():375-94. PubMed ID: 3462339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase shifts of human circadian rhythms due to shifts of artificial Zeitgebers.
    Wever RA
    Chronobiologia; 1980; 7(3):303-27. PubMed ID: 6108838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic circadian desynchronization of feeding-fasting rhythm generates alterations in daily glycemia, LDL cholesterolemia and microbiota composition in mice.
    Trebucq LL; Lamberti ML; Rota R; Aiello I; Borio C; Bilen M; Golombek DA; Plano SA; Chiesa JJ
    Front Nutr; 2023; 10():1154647. PubMed ID: 37125029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulated Chronic Jet Lag Affects the Structural and Functional Complexity of Hippocampal Neurons in Mice.
    Kumari R; Verma V; Singaravel M
    Neuroscience; 2024 Apr; 543():1-12. PubMed ID: 38354900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of scheduled forced wheel activity on body weight in male F344 rats undergoing chronic circadian desynchronization.
    Tsai LL; Tsai YC
    Int J Obes (Lond); 2007 Sep; 31(9):1368-77. PubMed ID: 17356527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of chronic jet lag on the central and peripheral circadian clocks in CBA/N mice.
    Iwamoto A; Kawai M; Furuse M; Yasuo S
    Chronobiol Int; 2014 Mar; 31(2):189-98. PubMed ID: 24147659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation to experimental jet-lag in R6/2 mice despite circadian dysrhythmia.
    Wood NI; McAllister CJ; Cuesta M; Aungier J; Fraenkel E; Morton AJ
    PLoS One; 2013; 8(2):e55036. PubMed ID: 23390510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic jet lag reduces motivation and affects other mood-related behaviors in male mice.
    Acosta J; Crespo MT; Plano SA; Golombek DA; Chiesa JJ; Agostino PV
    Front Physiol; 2023; 14():1225134. PubMed ID: 37745237
    [No Abstract]   [Full Text] [Related]  

  • 18. Direction-dependent effects of chronic "jet-lag" on hippocampal neurogenesis.
    Kott J; Leach G; Yan L
    Neurosci Lett; 2012 May; 515(2):177-80. PubMed ID: 22465247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forced desynchronization model for a diurnal primate.
    Silva CA; Melo LIM; Pires AR; Barbalho JC; Melo AV; Fernandes DAC; Oliveira EB; Azevedo CVM; Cambras T; Díez-Noguera A; Fontenele-Araujo J
    Chronobiol Int; 2018 Jan; 35(1):35-48. PubMed ID: 29211510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The phasing of circadian rhythms in mice kept under normal or short photoperiods.
    Weinert D; Freyberg S; Touitou Y; Djeridane Y; Waterhouse JM
    Physiol Behav; 2005 Apr; 84(5):791-8. PubMed ID: 15885257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.