These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 22307029)
1. Supercritical CO2 fluid-foaming of polymers to increase porosity: a method to improve the mechanical and biocompatibility characteristics for use as a potential alternative to allografts in impaction bone grafting? Tayton E; Purcell M; Aarvold A; Smith JO; Kalra S; Briscoe A; Shakesheff K; Howdle SM; Dunlop DG; Oreffo RO Acta Biomater; 2012 May; 8(5):1918-27. PubMed ID: 22307029 [TBL] [Abstract][Full Text] [Related]
2. An analysis of polymer type and chain length for use as a biological composite graft extender in impaction bone grafting: a mechanical and biocompatibility study. Tayton E; Fahmy S; Purcell M; Aarvold A; Smith JO; Kalra S; Briscoe A; Lanham S; Howdle S; Shakesheff K; Dunlop DG; Oreffo RO J Biomed Mater Res A; 2012 Dec; 100(12):3211-9. PubMed ID: 22707404 [TBL] [Abstract][Full Text] [Related]
3. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954 [TBL] [Abstract][Full Text] [Related]
4. Characterization of porous injectable poly-(propylene fumarate)-based bone graft substitute. Kim CW; Talac R; Lu L; Moore MJ; Currier BL; Yaszemski MJ J Biomed Mater Res A; 2008 Jun; 85(4):1114-9. PubMed ID: 17941027 [TBL] [Abstract][Full Text] [Related]
5. The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. White LJ; Hutter V; Tai H; Howdle SM; Shakesheff KM Acta Biomater; 2012 Jan; 8(1):61-71. PubMed ID: 21855663 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
7. Morphological effects of porous poly-d,l-lactic acid/hydroxyapatite scaffolds produced by supercritical CO2 foaming on their mechanical performance. Rouholamin D; van Grunsven W; Reilly GC; Smith PJ Proc Inst Mech Eng H; 2016 Aug; 230(8):761-74. PubMed ID: 27226064 [TBL] [Abstract][Full Text] [Related]
9. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells. Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654 [TBL] [Abstract][Full Text] [Related]
10. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. Huang X; Miao X J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281 [TBL] [Abstract][Full Text] [Related]
11. Porous TiNbZr alloy scaffolds for biomedical applications. Wang X; Li Y; Xiong J; Hodgson PD; Wen C Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597 [TBL] [Abstract][Full Text] [Related]
12. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453 [TBL] [Abstract][Full Text] [Related]
13. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores. Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901 [TBL] [Abstract][Full Text] [Related]
14. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. Kim SS; Ahn KM; Park MS; Lee JH; Choi CY; Kim BS J Biomed Mater Res A; 2007 Jan; 80(1):206-15. PubMed ID: 17072849 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical analysis of a synthetic, biodegradable impaction graft substitute. Lutton C; Wheatley D; Wilson L; Van der Velden W; Crawford R; Goss B J Biomed Mater Res A; 2010 Nov; 95(2):381-7. PubMed ID: 20632400 [TBL] [Abstract][Full Text] [Related]
16. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing. Zhao J; Xiao S; Lu X; Wang J; Weng J Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404 [TBL] [Abstract][Full Text] [Related]
17. [Fabrication of porous poly lactic acid-bone matrix gelatin composite bioactive material and its osteoinductive activity]. Zhang Y; Li B; Li J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):135-9. PubMed ID: 17357459 [TBL] [Abstract][Full Text] [Related]
18. Bioresorbable composites prepared by supercritical fluid foaming. Mathieu LM; Montjovent MO; Bourban PE; Pioletti DP; Månson JA J Biomed Mater Res A; 2005 Oct; 75(1):89-97. PubMed ID: 16037939 [TBL] [Abstract][Full Text] [Related]
19. Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester. Gualandi C; White LJ; Chen L; Gross RA; Shakesheff KM; Howdle SM; Scandola M Acta Biomater; 2010 Jan; 6(1):130-6. PubMed ID: 19619678 [TBL] [Abstract][Full Text] [Related]
20. Mechanical and Biological Properties of a Biodegradable Mg-Zn-Ca Porous Alloy. Zhang YQ; Li Y; Liu H; Bai J; Bao NR; Zhang Y; He P; Zhao JN; Tao L; Xue F; Zhou GX; Fan GT Orthop Surg; 2018 May; 10(2):160-168. PubMed ID: 29767463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]