These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 22307089)

  • 1. The magic and mystery of microRNA-27 in atherosclerosis.
    Chen WJ; Yin K; Zhao GJ; Fu YC; Tang CK
    Atherosclerosis; 2012 Jun; 222(2):314-23. PubMed ID: 22307089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNAs in flow-dependent vascular remodelling.
    Neth P; Nazari-Jahantigh M; Schober A; Weber C
    Cardiovasc Res; 2013 Jul; 99(2):294-303. PubMed ID: 23612583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA-155 in the pathogenesis of atherosclerosis: a conflicting role?
    Ma X; Ma C; Zheng X
    Heart Lung Circ; 2013 Oct; 22(10):811-8. PubMed ID: 23827206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNAs in arterial remodelling, inflammation and atherosclerosis.
    Weber C; Schober A; Zernecke A
    Curr Drug Targets; 2010 Aug; 11(8):950-6. PubMed ID: 20415650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of microRNAs in vascular diseases, inflammation, and angiogenesis.
    Urbich C; Kuehbacher A; Dimmeler S
    Cardiovasc Res; 2008 Sep; 79(4):581-8. PubMed ID: 18550634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1- and microRNA-155-dependent pathway during atherosclerosis.
    Wei Y; Nazari-Jahantigh M; Chan L; Zhu M; Heyll K; Corbalán-Campos J; Hartmann P; Thiemann A; Weber C; Schober A
    Circulation; 2013 Apr; 127(15):1609-19. PubMed ID: 23513069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noncoding RNAs in vascular inflammation and atherosclerosis: recent advances toward therapeutic applications.
    Cochain C; Zernecke A
    Curr Opin Lipidol; 2014 Oct; 25(5):380-6. PubMed ID: 25051497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA-126, -145, and -155: a therapeutic triad in atherosclerosis?
    Wei Y; Nazari-Jahantigh M; Neth P; Weber C; Schober A
    Arterioscler Thromb Vasc Biol; 2013 Mar; 33(3):449-54. PubMed ID: 23324496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Epigenetic factors in atherogenesis: microRNA].
    Smirnova AV; Sukhorukov VN; Karagodin VP; Orekhov AN
    Biomed Khim; 2016; 62(2):134-40. PubMed ID: 27143369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-33 in atherosclerosis etiology and pathophysiology.
    Chen WJ; Zhang M; Zhao GJ; Fu Y; Zhang DW; Zhu HB; Tang CK
    Atherosclerosis; 2013 Apr; 227(2):201-8. PubMed ID: 23261171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of cell proliferation in atherosclerosis: insights from animal models and human studies.
    Fuster JJ; Fernández P; González-Navarro H; Silvestre C; Nabah YN; Andrés V
    Cardiovasc Res; 2010 May; 86(2):254-64. PubMed ID: 19900964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of microRNAs in endothelial cell pathophysiology.
    Staszel T; Zapała B; Polus A; Sadakierska-Chudy A; Kieć-Wilk B; Stępień E; Wybrańska I; Chojnacka M; Dembińska-Kieć A
    Pol Arch Med Wewn; 2011 Oct; 121(10):361-6. PubMed ID: 21946298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice.
    Loyer X; Potteaux S; Vion AC; Guérin CL; Boulkroun S; Rautou PE; Ramkhelawon B; Esposito B; Dalloz M; Paul JL; Julia P; Maccario J; Boulanger CM; Mallat Z; Tedgui A
    Circ Res; 2014 Jan; 114(3):434-43. PubMed ID: 24255059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the MIR155 host gene in physiological and pathological processes.
    Elton TS; Selemon H; Elton SM; Parinandi NL
    Gene; 2013 Dec; 532(1):1-12. PubMed ID: 23246696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNAs in lipid metabolism and atherosclerosis.
    Giral H; Kratzer A; Landmesser U
    Best Pract Res Clin Endocrinol Metab; 2016 Oct; 30(5):665-676. PubMed ID: 27923459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemokines in atherosclerosis: proceedings resumed.
    Zernecke A; Weber C
    Arterioscler Thromb Vasc Biol; 2014 Apr; 34(4):742-50. PubMed ID: 24436368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inflammation-related gene expression by lipid oxidation-derived products in the progression of atherosclerosis.
    Leonarduzzi G; Gamba P; Gargiulo S; Biasi F; Poli G
    Free Radic Biol Med; 2012 Jan; 52(1):19-34. PubMed ID: 22037514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA-specific regulatory mechanisms in atherosclerosis.
    Nazari-Jahantigh M; Egea V; Schober A; Weber C
    J Mol Cell Cardiol; 2015 Dec; 89(Pt A):35-41. PubMed ID: 25450610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNAs as therapeutic targets in atherosclerosis.
    Loyer X; Mallat Z; Boulanger CM; Tedgui A
    Expert Opin Ther Targets; 2015 Apr; 19(4):489-96. PubMed ID: 25464904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic Role of MicroRNAs in Coupling Lipid Metabolism and Atherosclerosis.
    Novák J; Olejníčková V; Tkáčová N; Santulli G
    Adv Exp Med Biol; 2015; 887():79-100. PubMed ID: 26662987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.