These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2230717)

  • 1. Characterization of a glycerol kinase mutant of Aspergillus niger.
    Witteveen CF; van de Vondervoort P; Dijkema C; Swart K; Visser J
    J Gen Microbiol; 1990 Jul; 136(7):1299-305. PubMed ID: 2230717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and properties of NADP(+)-dependent glycerol dehydrogenases from Aspergillus nidulans and A. niger.
    Schuurink R; Busink R; Hondmann DH; Witteveen CF; Visser J
    J Gen Microbiol; 1990 Jun; 136(6):1043-50. PubMed ID: 2200840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycerol catabolism in Aspergillus nidulans.
    Hondmann DH; Busink R; Witteveen CF; Visser J
    J Gen Microbiol; 1991 Mar; 137(3):629-36. PubMed ID: 2033381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymes for the NADPH-dependent reduction of dihydroxyacetone and D-glyceraldehyde and L-glyceraldehyde in the mould Hypocrea jecorina.
    Liepins J; Kuorelahti S; Penttilä M; Richard P
    FEBS J; 2006 Sep; 273(18):4229-35. PubMed ID: 16930134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An NADP(+)-dependent glycerol dehydrogenase in Aspergillus nidulans is inducible by D-galacturonate.
    Sealy-Lewis HM; Fairhurst V
    Curr Genet; 1992 Oct; 22(4):293-6. PubMed ID: 1394511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthetic pathways of glycerol accumulation under salt stress in Aspergillus nidulans.
    Redkar RJ; Locy RD; Singh NK
    Exp Mycol; 1995 Dec; 19(4):241-6. PubMed ID: 8574901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Thermotoga maritima glycerol dehydrogenase for the enzymatic production of dihydroxyacetone.
    Beauchamp J; Gross PG; Vieille C
    Appl Microbiol Biotechnol; 2014 Aug; 98(16):7039-50. PubMed ID: 24664447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyol pools in Aspergillus niger.
    Witteveen CF; Visser J
    FEMS Microbiol Lett; 1995 Dec; 134(1):57-62. PubMed ID: 8593956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycerol uptake mutants of the hyphal fungus Aspergillus nidulans.
    Visser J; Van Rooijen R; Dijkema C; Swart K; Sealy-Lewis HM
    J Gen Microbiol; 1988 Mar; 134(3):655-9. PubMed ID: 3053975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans.
    Li MH; Wu J; Liu X; Lin JP; Wei DZ; Chen H
    Bioresour Technol; 2010 Nov; 101(21):8294-9. PubMed ID: 20576428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of glycerol and dihydroxyacetone in Acetobacter xylinum and its possible regulatory role.
    Weinhouse H; Benziman M
    J Bacteriol; 1976 Aug; 127(2):747-54. PubMed ID: 956117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a Gluconobacter frateurii mutant to prevent dihydroxyacetone accumulation during glyceric acid production from glycerol.
    Habe H; Shimada Y; Fukuoka T; Kitamoto D; Itagaki M; Watanabe K; Yanagishita H; Yakushi T; Matsushita K; Sakaki K
    Biosci Biotechnol Biochem; 2010; 74(11):2330-2. PubMed ID: 21071844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of glycerol to 1,3-dihydroxyacetone by glycerol dehydrogenase co-expressed with an NADH oxidase for cofactor regeneration.
    Zhang J; Cui Z; Chang H; Fan X; Zhao Q; Wei W
    Biotechnol Lett; 2016 Sep; 38(9):1559-64. PubMed ID: 27233513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and physiological characterization of the NAD-dependent glycerol 3-phosphate dehydrogenase in the filamentous fungus Aspergillus nidulans.
    Fillinger S; Ruijter G; Tamás MJ; Visser J; Thevelein JM; d'Enfert C
    Mol Microbiol; 2001 Jan; 39(1):145-57. PubMed ID: 11123696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An inducible phosphoenolpyruvate: dihydroxyacetone phosphotransferase system in Escherichia coli.
    Jin RZ; Lin EC
    J Gen Microbiol; 1984 Jan; 130(1):83-8. PubMed ID: 6368745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of dihydroxyacetone kinases I and II in the dha regulon of Klebsiella pneumoniae.
    Wei D; Wang M; Jiang B; Shi J; Hao J
    J Biotechnol; 2014 May; 177():13-9. PubMed ID: 24583287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Derepression of an NAD-linked dehydrogenase that serves an Escherichia coli mutant for growth on glycerol.
    Tang JC; St Martin EJ; Lin EC
    J Bacteriol; 1982 Dec; 152(3):1001-7. PubMed ID: 6754692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of glycerol dehydrogenase activities present in Mucor circinelloides YR-1.
    Camacho Morales RL; Castellanos AD; Zazueta-Sandoval R
    Antonie Van Leeuwenhoek; 2010 Nov; 98(4):437-45. PubMed ID: 20512634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycerol utilization in Fusarium oxysporum var. lini: regulation of transport and metabolism.
    Castro IM; Loureiro-Dias MC
    J Gen Microbiol; 1991 Jul; 137(7):1497-502. PubMed ID: 1955848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opening a Novel Biosynthetic Pathway to Dihydroxyacetone and Glycerol in
    Guitart Font E; Sprenger GA
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33348713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.